Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Optimization of Laminated Stack Solutions for Electric Motors in Electrified Vehicles

2024-04-09
2024-01-2214
The electrification of vehicles marks the introduction of new products to the automotive market and a continued effort to optimize their performance. The electric motor is an important component with which a further optimization of efficiency, power density and cost can be achieved. Additional benefits can be realized in the laminated core. This paper presents an innovative method to produce laminated stacks by a chain of processes different from conventional ways. The process chain presents a sequence of precision blanking, buffering, heat treatment and gluing. The effect of these processes is compared with existing solutions that typically contain some individual features but usually not the combination that enhances the overall effect. The heat treatment decreases residual stresses from previous process steps and reduces power losses in the laminated core. Depending on the design, benefits around 20% are found.
Journal Article

Concept Design of a Parking Brake Module for Standstill Management and Wheel Individual Brake Torque Generation for EVs with Unconventional Service Brake Topology

2022-09-19
2022-01-1186
For electric vehicles the ability for regenerative braking reduces the use of friction brakes. Particularly on the rear axle of vehicles with reduced dynamic requirements such as urban vehicles, this can offer a potential for downsizing or, in extreme cases, even the elimination of the friction brakes on the rear axle. Due to the fact that the rear axle service brakes also represent the typical parking brake location in SoA (State-of-Art) vehicles, a rigorous rethinking of the parking brake concept is necessary to incorporate safe vehicle standstill management for such novel brake system topology. This research study introduces a novel parking brake design that covers SoA but also legal requirements while retaining potentials associated with the elimination of the rear service brakes such as cost and packaging.
Journal Article

Predictive Multi-Objective Operation Strategy Considering Battery Cycle Aging for Hybrid Electric Vehicles

2018-04-03
2018-01-1011
Due to the new CO2 targets for vehicles, electrification of powertrains and operation strategies for electrified powertrains have drawn more attention. This article presents a predictive multi-objective operation strategy for hybrid electric vehicles (HEVs), which simultaneously minimizes the fuel consumption and the cycle aging of traction batteries. This proposed strategy shows better performance by using predictive information and high robustness to inaccuracy of predictive information. In this work, the benefits of the developed operation strategies are demonstrated in a strong hybrid electric vehicle (sHEV) with P2-configuration. For the cycle aging of a lithium-ion battery, an empirical model is built up with Gaussian processes based on experimental data.
Technical Paper

Intelligent Hall Effect-Based Magnetosensors in Modern Vehicle Stability Systems

2000-11-01
2000-01-C058
After comparing magnetosensor technologies for automotive use the system aspects of wheelspeed sensors for vehicle stability systems are discussed. A new generation of intelligent differential Hall Effect-based sensors is described focussing on technology, operating principle and circuitry of the Hall IC. The final realization of the wheel speed sensor is presented concluding with a summary of the main advantages of this concept.
Technical Paper

Methods for the Efficient Development and Optimization of Automotive Electrical Systems

1997-02-24
970301
In the last years, the requirements for electrical energy systems in motor vehicles have increased considerably. In the past, many studies were focused on single components of the electrical system. However, to shorten the development process, reduce costs, improve reliability and also to optimize the fuel consumption due to the electrical system, the electrical system must be regarded as a whole. The Robert Bosch GmbH has developed a simulation environment, which is intended to improve the development process of new vehicle electrical systems by means of computer simulation. On the basis of a freely selectable driving cycle and various driver models, it is possible to simulate the behavior of electrical energy supply structures. The model of the electrical system is coupled to a dynamic model of the drivetrain. The characteristics of this drivetrain can also be modified and various vehicle models can be selected for simulation.
Technical Paper

Measurement and Simulation of Transients in Longitudinal and Lateral Tire Forces

1990-02-01
900210
The design of ABS- or vehicle control systems by means of computer simulation needs adequate tire models. Recordings of the wheel speed during ABS control show oscillations caused by the rapid pressure changes in the wheel brake cylinder. Investigations in lateral tire dynamics show a phase shift between the slip angle and the lateral tire force. These transients can not be explained by simulation if the usual stationary tire input-output behaviour is supposed. Thus the investigation of the oscillations requires a different approach to the modelling of the tire. In a first step measurements with an experimental car equipped with a computer for data acquisition and control and with various sensors - e.g. a Rotating Wheel Dynamometer - were carried out. The measurement results showed a correlation between the oscillations in the wheel speed and the braking force caused by the pressure pulses as well as high frequency oscillations in the lateral tire forces.
Technical Paper

Measurement and Simulation of Transient Tire Forces

1989-02-01
890640
High performance Antilock Braking Systems (ABS) are well known to allow for very rapid pressure changes in the wheel brake cylinders. Recordings of the wheel speed during ABS control show oscillations just after the rapid pressure changes. The oscillations can not be explained by simulation if the usual stationary brake force versus slip curves are used. Thus the investigation of the oscillations requires a different approach to the modelling of the tire. As a first step in the alternative modelling of the tire the forces and moments on the running tire were measured using an experimental car. During the measurement the pressure in the wheel brake cylinder was modulated stepwise. A new Rotating Wheel Dynamometer was used to take those measurements. The results showed that the oscillations which were observed in the wheel speed could also be found in the braking force on the tire. Contrarily, the corresponding oscillations could not be found in the braking torque.
Technical Paper

ABS and ASR for Passenger Cars -Coals and Limits

1989-02-01
890834
Antilock Braking Systems (ABS) and Traction Control Systems (ASR) should ensure maximum stability and steerability even under extreme driving conditions. Since high performance systems additionally improve brake distance and traction within the given physical limits, every vehicle equipped with ABS and ASR offers considerably higher active safety. ABS was introduced into the market by the Robert Bosch GmbH more than ten years ago, and more than 3 million systems have been produced by the end of 1988. Volume production of ASR began in 1987. This paper describes several high-, medium-, and low performance concepts and compares them with regard to safety and performance. Although it seems to be nearly impossible to define a cost/benefit ratio between monetary values and safety, our purpose here is to identify further development strategies through the use of a decision matrix.
Technical Paper

ASR - Traction Control - A Logical Extension of ABS

1987-02-01
870337
Control of a car is lost, or considerably reduced, whenever one or more of the wheels exceed the stability limit during braking or accelerating due to excessive brake or drive slip. The problem of ensuring optimum stability, steerability and brake distance of a car during hard braking is solved by means of the well-known Anti-lock Braking System (ABS). The task to guarantee stability, steerability and optimum traction during acceleration, particularly on asymmetrical road surfaces and during cornering maneuvers, is being performed by the traction control system (ASR). Several means to provide an optimum traction control are described, e. g the control of engine torque by influencing the throttle plate and/or the ignition and/or the fuel injection.
X