Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Semitrailer Torsional Stiffness Data for Improved Modeling Fidelity

2011-09-13
2011-01-2163
Vehicle dynamics models employed in heavy truck simulation often treat the semitrailer as a torsionally rigid member, assuming zero deflection along its longitudinal axis as a moment is applied to its frame. Experimental testing, however, reveals that semitrailers do twist, sometimes enough to precipitate rollover when a rigid trailer may have remained upright. Improving the model by incorporating realistic trailer roll stiffness values can improve assessment of heavy truck dynamics, as well as an increased understanding of the effectiveness of stability control systems in limit handling maneuvers. Torsional stiffness measurements were conducted by the National Highway Traffic Safety Administration (NHTSA) for eight semitrailers of different types, including different length box vans, traditional and spread axle flat beds, and a tanker.
Technical Paper

Straight-Line Dry Tractor-Semitrailer Braking and Handling Comparison to HVE Computer SImulation

2010-10-05
2010-01-1921
The ability of a simulation model to accurately predict vehicle response is investigated in this paper. This study seeks to compare full-scale tractor-semitrailer straight-line braking test data to predicted response from a detailed heavy truck computer vehicle dynamics simulation model. The model, Simulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment. This computer program includes a vehicle dynamic model capable of simulating vehicle motion in 3-dimensional environments and includes Brake Designer and ABS Simulation Models. The results of several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio are presented.
Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Technical Paper

Vehicle Speed Changes and Accelerations Associated with Curb Impacts and a Comparison to HVE SIMON

2005-04-11
2005-01-1175
This study was conducted to compare vehicle speed change and acceleration data from full scale testing to results generated by the Simulation Model Non-linear (SIMON) vehicle dynamic simulation model (version 2.0) within the Human Vehicle Environment (HVE) software. The study also sought to expand the body of existing curb impact tests and compare the present results to data from published literature. The results of the full scale testing of a 1996 Dodge Ram 1500 pickup are presented. Instrumented tests were performed at speeds up to approximately 6.7 m/s (15.0 mph) and at approach angles of 90° and 45°. SIMON was used to simulate the full scale testing conducted by the authors. The simulation results, including primarily vehicle speed change (delta-v), and accelerations are compared to the results of full scale testing. The appropriate method for modeling curb profile within SIMON version 2.0 was studied and is presented in this paper.
X