Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of a Motor Torque Distribution Strategy of Six-wheel-Driven Electric Vehicles for Optimized Energy Consumption

2013-04-08
2013-01-1746
This paper describes a driving motor torque distribution strategy of six-wheel-driven electric vehicles for optimized energy consumption. In this research, this strategy minimizes motoring power consumption and maximizes regenerative braking power under given required power condition. The torque distribution controller consists of total required motor torque calculation part, upper and optimal torque calculation part, lower level controller. The upper level controller determines total required torque of vehicle. And the torque is determined by acceleration pedal input of driver and vehicle velocity. The lower level controller calculates energy consumption in given condition and distributes motor torque to driving motor minimizing energy consumption. In distributing optimal motor torque, it is important to get accurate characteristics of driving motor and performance constraint.
Technical Paper

Torque Distribution Algorithm of Six-Wheeled Skid-Steered Vehicles for On-Road and Off-Road Maneuverability

2013-04-08
2013-01-0628
This paper is concerned with the torque distribution problem including slip limitation and actuator fault tolerance to improve vehicle lateral stability and maneuverability of six-wheeled skid-steered vehicles. The torque distribution algorithm to distribute wheel torque to each wheel of a skid-steered vehicle consists of an upper level control layer, a lower level control layer and an estimation layer. The upper level control layer is designed to obtain longitudinal net force and desired yaw moment, while the lower level control layer determines distributed driving and braking torques to six wheels. The algorithm takes vehicle speed, slip ratio and tire load information from the estimation layer, as well as actuator fault information from each in-wheel motor controller unit.
Technical Paper

Development of a Driving Control Algorithm and Performance Verification Using Real-Time Simulator for a 6WD/6WS Vehicle

2011-04-12
2011-01-0262
This paper describes development and performance verification of a driving control algorithm for a 6 wheel driving and 6 wheel steering (6WD/6WS) vehicle using a real-time simulator. This control algorithm is developed to improve vehicle stability and maneuverability under high speed driving conditions. The driving controller consists of stability decision, upper, lower level and wheel slip controller. The stability decision algorithm determines desired longitudinal acceleration and reference yaw rate in order to maintain lateral and roll stability using G-vectoring method. Upper level controller is designed to obtain reference longitudinal net force, yaw moment and front/middle steering angles. The longitudinal net force is calculated to satisfy the reference longitudinal acceleration by the PID control theory. The reference yaw moment is determined to satisfy the reference yaw rate using sliding control theory. Lower level controller determines distributed tractive/braking torques.
X