Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Journal Article

Pilot Injection Ignition Properties Under Low-Temperature, Dilute In-Cylinder Conditions

2013-10-14
2013-01-2531
Measurements of ignition behavior, homogeneous reactor simulations employing detailed kinetics, and quantitative in-cylinder imaging of fuel-air distributions are used to delineate the impact of temperature, dilution, pilot injection mass, and injection pressure on the pilot ignition process. For dilute, low-temperature conditions characterized by a lengthy ignition delay, pilot ignition is impeded by the formation of excessively lean mixture. Under these conditions, smaller pilot mass or higher injection pressures further lengthen the pilot ignition delay. Similarly, excessively rich mixtures formed under relatively short ignition delay conditions typical of conventional diesel combustion will also prolong the ignition delay. In this latter case, smaller pilot mass or higher injection pressures will shorten the ignition delay. The minimum charge temperature required to effect a robust pilot ignition event is strongly dependent on charge O2 concentration.
Technical Paper

Characterization of the Mixing of Fresh Charge with Combustion Residuals Using Laser Raman Scattering with Broadband Detection

1998-05-04
981428
Spontaneous Raman scattering with broadband signal collection is used to simultaneously measure the mole fractions of CO2, H2O, N2, O2, and fuel (C3H8) in a spark-ignition engine operating at low load. Both cycle-averaged and single-shot, cycle-resolved measurements of the mixing between residual and fresh charge are made from the beginning of the intake stroke to TDC compression. The measurements are made at twelve locations simultaneously with sub-millimeter spatial precision, which is sufficient to resolve the characteristic scales of inhomogeneity in most cases. Analysis of the spatial covariance functions provides a measure of the noise contribution to the measured mole fractions and, in certain instances, allows the determination of whether the measured composition fluctuations are associated with spatial inhomogeneities or with cyclic variations in overall charge composition.
X