Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Conceptual Investigation of the Origins of Hydrocarbon Emissions from Mixing-Controlled, Compression-Ignition Combustion

2017-03-28
2017-01-0724
Experiments conducted with a set of reference diesel fuels in an optically accessible, compression-ignition engine have revealed a strong correlation between hydrocarbon (HC) emissions and the flame lift-off length at the end of the premixed burn (EOPMB), with increasing HC emissions associated with longer lift-off lengths. The correlation is largely independent of fuel properties and charge-gas O2 mole fraction, but varies with fuel-injection pressure. A transient, one-dimensional jet model was used to investigate three separate mechanisms that could explain the observed impact of lift-off length on HC emissions. Each mechanism relies on the formation of mixtures that are too lean to support combustion, or “overlean.” First, overlean regions can be formed after the start of fuel injection but before the end of the premixed burn.
Journal Article

Effects of Injection Pressure, Injection-Rate Shape, and Heat Release on Liquid Length

2012-04-16
2012-01-0463
The in-cylinder extent of liquid-phase fuel penetration (i.e., the liquid length) is an important parameter in combustion-chamber design because liquid lengths that are too long can lead to wall impingement and corresponding degradation of engine efficiency, emissions, and durability. Previous liquid-length measurements in constant-volume combustion chambers have shown that the liquid length is nominally independent of injection pressure, but these measurements have employed common-rail fuel systems where injection rate is approximately constant during the entire injection event, and they have been conducted under quasi-steady ambient thermodynamic conditions. The objective of the current work is to better understand the effects of injection-rate shape and injection pressure on the liquid length, including possible effects of unsteady ambient conditions in an engine.
X