Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Inclusion of Upstream Turbulent Inflow Statistics to Numerically Acquire Proper Fan Noise Characteristics

2016-06-15
2016-01-1811
To obtain realistic noise characteristics from CAA studies of subsonic fans, it is important to prescribe properly constructed turbulent inflow statistics. This is frequently omitted; instead it is assumed that the stochastic characteristics of turbulence, absent at the initial stage, progressively develops as the rotor inflicts the flow field over time and hence that the sound generating mechanism governed by surface pressure fluctuations are asymptotically accounted for. That assumption violates the actual interplay taking place between an ingested flow field and the surface pressure fluctuations exerted by the blades producing noise. The aim of the present study is to examine the coupling effect between synthetically ingested turbulence to sound produced from a subsonic ducted fan. The steady state inflow parameters are mapped from a precursor RANS simulation onto the inflow boundaries of a reduced domain to limit the computational cost.
Technical Paper

Effect of Swirl/Tumble (Tilt) Angle on Flow Homogeneity, Turbulence and Mixing Properties

2014-10-13
2014-01-2579
In this work, the effect of swirl to tumble ratio on homogeneity, turbulence and mixing in a generic heavy duty Diesel engine during compression, is investigated using Large-Eddy Simulations. The main conclusion is that the relative importance of dilatation (relative volume change) increases whereas the effect of tumble breakdown decreases with the swirl to tumble ratio. In detail, we show that an increase in tumble raises the peak turbulence level and shifts the peak to earlier crank angles, which in turn leads to higher dissipation. Moreover, maximum turbulence level at top dead center is obtained for a combination of swirl and tumble rather than for pure tumble. Furthermore, it is observed that the peak turbulent kinetic energy displays levels three times greater than the initial kinetic energy of the tumble motion. Thus, energy is added to the flow (turbulence) by the piston through generation of vorticity by vorticity-dilatation interaction.
Technical Paper

Regulatory Options for Improving Aerodynamic Performance of Commercial Vehicles

2013-09-24
2013-01-2416
This paper examines how commercial vehicle aerodynamic improvements can be influenced by regulation particularly with respect to size and weight policy. It discusses the potential use of performance based standards (PBS) first introduced to optimize vehicle configurations in terms of vehicle stability and control and compatibility with highway geometry. There are several vehicle treatments that can be used to reduce aerodynamic drag, some of which lengthen or widen the vehicle without increasing cargo capacity. One such solution is referred to as ‘boat tails” consisting of a light weight external extension of the trailer allowing the air flow to remain attached as the vehicle cross section diminishes resulting in a reduction in the area of negative pressure at the end of the vehicle which reduces drag force.
Technical Paper

Linear Acoustic Exhaust System Simulation Using Source Data from Non Linear Simulation

2005-05-16
2005-01-2358
Both linear (frequency domain) and non-linear (time domain) prediction codes are used for the simulation of duct acoustics in exhaust systems. Each approach has its own set of advantages and disadvantages. One disadvantage of the linear method is that information about the engine as an acoustic source is needed in order to calculate the insertion loss of mufflers or the level of radiated sound. The source model used in the low frequency plane wave range is the linear time invariant 1-port model. This source characterization data is usually obtained from experimental tests where multi-load methods and especially the two-load method are most commonly used. These measurements are time consuming and expensive. However, this data can also be extracted from an existing 1-D non-linear CFD code describing the engine gas exchange process.
X