Refine Your Search

Topic

Search Results

Technical Paper

A Mapless Trajectory Prediction Model with Enhanced Temporal Modeling

2024-04-09
2024-01-2874
The prediction of agents' future trajectory is a crucial task in supporting advanced driver-assistance systems (ADAS) and plays a vital role in ensuring safe decisions for autonomous driving (AD). Currently, prevailing trajectory prediction methods heavily rely on high-definition maps (HD maps) as a source of prior knowledge. While HD maps enhance the accuracy of trajectory prediction by providing information about the surrounding environment, their widespread use is limited due to their high cost and legal restrictions. Furthermore, due to object occlusion, limited field of view, and other factors, the historical trajectory of the target agent is often incomplete This limitation significantly reduces the accuracy of trajectory prediction. Therefore, this paper proposes ETSA-Pred, a mapless trajectory prediction model that incorporates enhanced temporal modeling and spatial self-attention.
Technical Paper

Research on the Real-time PM Emission Prediction Method for the Transient Process of Diesel Engine based on Transformer Model

2023-09-29
2023-32-0156
In order to meet increasingly stringent emission regulations, it is significance to establish a control- oriented transient NOx and PM emission prediction model and improve the accuracy and real-time performance. In this study, the prediction model of transient PM emissions based on Transformer is established. In terms of model accuracy and real-time performance, Transformer emission prediction model is compared with Multilayer perceptron (MLP) neural network and Long-Short Term Memory (LSTM) emission prediction model. The results show that the performance of Transformer transient emission prediction model is superior to other model structures, it can be used for real-time prediction.
Technical Paper

New Low-GWP Refrigerants for Electric Vehicle Heat Pump with Superior Comprehensive Performance

2023-04-11
2023-01-0131
The heat pump with low global warming potential (GWP) refrigerants is imperative for the electric vehicle (EV) to slow down global warming and extend the driving range while meeting passengers' thermal comfort in low ambient temperatures. However, there are no appropriate refrigerants. To provide long-term and environmental-friendly refrigerants in the heat pump for EVs, herein, we reported newly developed low-GWP refrigerant mixtures, i.e., DL3B, whose GWP is lower than 140, the flammability (lower flammability limit and burning velocity), saturation pressure, lubricant miscibility, material compatibility were experimentally tested. A test bench that can investigate the performance of an R410A prototype was built. The drop-in tests of the DL refrigerant were carried out to evaluate the capacities and COPs for both cooling and heating modes in the EV heat pump system.
Technical Paper

Weak Supervised Hierarchical Place Recognition with VLAD-Based Descriptor

2022-12-22
2022-01-7099
Visual Place Recognition (VPR) excels at providing a good location prior for autonomous vehicles to initialize the map-based visual SLAM system, especially when the environment changes after a long term. Condition change and viewpoint change, which influences features extracted from images, are two of the major challenges in recognizing a visited place. Existing VPR methods focus on developing the robustness of global feature to address them but ignore the benefits that local feature can auxiliarily offer. Therefore, we introduce a novel hierarchical place recognition method with both global and local features deriving from homologous VLAD to improve the VPR performance. Our model is weak supervised by GPS label and we design a fine-tuning strategy with a coupled triplet loss to make the model more suitable for extracting local features.
Technical Paper

Analysis of Energy and Exergy Distribution for Improving Fuel Economy of Marine Low-speed Two-stroke Diesel Engine

2022-03-29
2022-01-0392
Increasingly strict emission regulations and unfavorable economic climate bring severe challenges to the energy conservation of marine low-speed engine. Besides traditional methods, the energy and exergy analysis could acknowledge the losses of fuel from a global perspective to further improve the engine efficiency. Therefore, the energy and exergy analysis is conducted for a marine low-speed engine based on the experimental data. Energy analysis shows the exhaust gas occupies the largest proportion of all fuel energy waste, and it rises with the increment of engine load. The heat transfer consumes the second largest proportion, while it is negatively correlated to engine load. The energy analysis indicates that the most effective way to improve the engine efficiency is to reduce the energy wasted by exhaust gas and heat transfer. However, the latter exergy analysis demonstrates that there are other effective approaches to improve the engine efficiency.
Journal Article

An On-Line Path Correction Method Based on 2D Laser Profile Measurement for Gluing Robot

2022-03-08
2022-01-0016
Gluing is an essential fastening step in the field of aircraft assembly except for riveting and bolting. Generally, the robotic programs of gluing are generated in CAM environment. Due to the positioning errors and deformation of the workpiece to be glued in the fixture, the nominal pose and the actual pose of the workpiece are no longer consistent with each other. The Robot trajectory of dispensing glue is adjusted manually according to the actual pose of the workpiece by robot teaching. In this paper, an on-line gluing path correction method is developed by 2D laser profile measurement. A pose calibration method for 2D laser profiler integrated into a gluing robot by measuring a fixed center point of a standard ball is proposed to identify the position and orientation of the laser sensor, which enables the accurate transforming coordinates between the robot frame and the sensor frame.
Journal Article

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

2021-04-06
2021-01-0409
Computational fluid dynamics (CFD) modeling has many potentials for the design and calibration of modern and future engine concepts, including facilitating the exploration of operation conditions and casting light on the involved physical and chemical phenomena. As more attention is paid to the matching of different fuel types and combustion strategies, the use of detailed chemistry in characterizing auto-ignition, flame stabilization processes and the formation of pollutant emissions is becoming critical, yet computationally intensive. Therefore, there is much interest in using tabulated approaches to account for detailed chemistry with an affordable computational cost. In the present work, the tabulated flamelet progress variable approach (TFPV), based on flamelet assumptions, was investigated and validated by simulating constant-volume Diesel combustion with primary reference fuels - binary mixtures of n-heptane and iso-octane.
Technical Paper

Unmanned Terminal Vehicle Positioning System Based on Roadside Single-Line Lidar

2021-03-02
2021-01-5029
With the development of economic globalization, the speed of development of container terminals is also very rapid. Under the pressure brought by the surge in throughput, the unmanned and intelligent terminals will become the future development direction of terminals. As the cornerstone of the unmanned terminal, the positioning technology provides the most basic position information for system scheduling, path planning, real-time correction, and loading and unloading. Therefore, this paper is aimed to design a low-cost, high-precision, and easy-to-maintain unmanned dock positioning system in order to better solve the problem of unmanned dock positioning. The main research content of this paper is to design a positioning algorithm for unmanned terminal Automated Guided Vehicle (AGV) based on single-line lidar, including point cloud data acquisition, background filtering, point cloud clustering, vehicle position extraction, and result optimization.
Technical Paper

A Multimodal States Based Vehicle Descriptor and Dilated Convolutional Social Pooling for Vehicle Trajectory Prediction

2021-01-13
2020-01-5113
Precise trajectory prediction of surrounding vehicles is critical for decision-making of autonomous vehicles, and learning-based approaches are well recognized for the robustness. However, state-of-the-art learning-based methods ignore (1) the feasibility of the vehicle’s multimodal state information for prediction and (2) the mutually exclusive relationship between the global traffic scene receptive fields and the local position resolution when modeling vehicles’ interactions, which may influence prediction accuracy. Therefore, we propose a “vehicle descriptor”-based long short-term memory (LSTM) model with the dilated convolutional social pooling (VD+DCS-LSTM) to cope with the above issues.
Technical Paper

A Game Theory-Based Model Predictive Controller Considering Intension for Mandatory Lane Change

2020-12-30
2020-01-5127
In recent years, with the increase of traffic accidents and traffic jams, lane change, as one of the most important and commonly automatic driving operations for autonomous vehicles, is receiving attention in academia. It is considered to be one of the important solutions that play an important role in improving road traffic safety and efficiency. However, most existing lane-changing models are rule-based lane-changing models. These models only assume a one-direction impact of surrounding vehicles on the lane-changing vehicle. In fact, lane change is a process of mutual interaction between vehicles due to the complexity and uncertainty of the traffic environment. Moreover, the safety and efficiency of existing lane-changing decision algorithms need to be improved. In this paper, we proposed a multivehicle cooperative control approach with a distributed control structure to control the model.
Journal Article

Exploring the Effects of the Key Multi-Injection Parameters on Combustion and Emissions in Intelligent Charge Compression Ignition (ICCI) Mode

2020-09-15
2020-01-2035
Developing advanced combustion mode has been the active area for high efficiency and ultra-low emissions of the next-generation internal combustion engines. In this paper, a series of experiments were conducted in a modified single-cylinder compression ignition engine for operating a brand-new combustion mode denoted as intelligent charge compression ignition (ICCI) mode. By using two common-rail systems, commercial gasoline and diesel were alternately directly injected into the cylinder through multi-injection strategies in the injection timing range of 50~320 °CA BTDC. Thus, the in-cylinder stratified condition can be flexibly and accurately adjusted in this unique combustion mode. The key injection parameters, such as gasoline injection timing and diesel split ratio, were investigated to explore their effects on engine combustion, emissions, and fuel consumption.
Technical Paper

Adaptive Optimal Management Strategy for Hybrid Vehicles Based on Pontryagin’s Minimum Principle

2020-04-14
2020-01-1191
The energy management strategies (EMS) for hybrid electric vehicles (HEV) have a great impact on the fuel economy (FE). The Pontryagin's minimum principle (PMP) has been proved to be a viable control strategy for HEV. The optimal costate of the PMP control can be determined by the given information of the driving conditions. Since the full knowledge of future driving conditions is not available, this paper proposed a dynamic optimization method for PMP costate without the prediction of the driving cycle. It is known that the lower fuel consumption the method yields, the more efficiently the engine works. The selection of costate is designed to make the engine work in the high efficiency range. Compared with the rule-based control, the proposed method by the principle of Hamiltonian, can make engine working points have more opportunities locating in the middle of high efficiency range, instead of on the boundary of high efficiency range.
Technical Paper

Gearshift Control Based on Fuzzy Logic of a Novel Two-Speed Transmission for Electric Vehicles

2020-04-14
2020-01-5004
Using highly efficient powertrain is one of the most important and effective approaches to increase the driving distance of electric vehicles (EVs). In this paper, a novel two-speed dual-clutch transmission (DCT) is proposed. The transmission is comprised of two traditional friction clutches and two-stage planetary gear sets. One clutch connects the input sun gear and the other connects the input carrier. The Simulink models including an electric motor and two-speed DCT are established. Gearshift schedule based on fuzzy logic which reflects the driver’s intensions is adopted to improve the dynamic and economic performance of the novel transmission. The simulation model is built using MATLAB/Simulink® to validate the effectiveness of the proposed gearshift schedule compared with the conventional two-parameter gearshift schedule. Simulation results show that both the dynamic and economic performance of the novel DCT for EVs are improved with the proposed fuzzy logic gearshift schedule.
Technical Paper

Internal Model Control during Mode Transition Subject to Time Delay for Hybrid Electric Vehicles

2020-04-14
2020-01-0961
With the rapid development of series-parallel hybrid electric vehicles (SPHEVs), mode transition from pure electrical drive to hybrid drive has attracted considerable attention. The presence of time delay due to response capacity of actuators and signal transmission of communication may cause decrease of speed tracking accuracy, even instable dynamics. Consequently, drivability of the SPHEV is unacceptable, and durability of the components is reduced. So far, plenty of control strategies have been proposed for mode transition, however, no previous research has been reported to deal with the time delay during mode transition. In this paper, a dynamic model with time delay of hybrid electric system is established. Next, a mode transition time-delay controller is proposed based on a two degree of freedom internal model controller (2-DOF-IMC).
Journal Article

Computational Modeling of Diesel Spray Combustion with Multiple Injections

2020-04-14
2020-01-1155
Multiple injection strategies are commonly used in conventional Diesel engines due to the flexibility for optimizing heat-release timing with a consequent improvement in fuel economy and engine-out emissions. This is also desirable in low-temperature combustion (LTC) engines since it offers the potential to reduce unburned hydrocarbon and CO emissions. To better utilize these benefits and find optimal calibrations of split injection strategies, it is imperative that the fundamental processes of multiple injection combustion are understood and computational fluid dynamics models accurately describe the flow dynamics and combustion characteristics between different injection events. To this end, this work is dedicated to the identification of suitable methodologies to predict the multiple injection combustion process.
Journal Article

Control Model of Automated Driving Systems Based on SOTIF Evaluation

2020-04-14
2020-01-1214
In partially automated and conditionally automated vehicles, a part of the work of human drivers is replaced by the system, and the main source of safety risks is no longer system failures, but non-failure risks caused by insufficient system function design. The absence of unreasonable risk due to hazards resulting from functional insufficiencies of the intended functionality or by reasonably foreseeable misuse by persons, is referred to as the Safety Of The Intended Functionality. Drivers have the responsibility to supervise the automated driving system. When they don't agree with the operation behavior of the system, they will interfere with the instructions. However, this may lead to potential risks.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

A New Positioning Device Designed for Aircraft Automated Alignment System

2019-09-16
2019-01-1883
Accurate and fast positioning of large aircraft component is of great importance for Automated Alignment System. The Ball joint is a widely-used mechanical device connecting the aircraft component and positioners. However, there are some shortcomings for the device in man-machine engineering, such as the entry state of the ball-head still needs to be confirmed by the workers and then switched to the locking state manually. To solve above problems, a new positioning mechanism is present in this paper, which consists of a ball-head and a ball-socket. The new device is equipped with a monocular vision system, in which a calibrated industrial camera is used to collect the images of the ball-head. And then, the 3-D coordinate of the ball-head center is calculated by a designed algorithm, guiding the positioner to capture the ball-head. Once the ball-head gets into the ball-socket, the pneumatic system will drive the pistons to move to the specified location.
Technical Paper

Heat Transfer Characteristics of Gas Cooler in a CO2 Automobile Heat Pump System

2019-04-02
2019-01-0912
An automobile heat pump system with conventional refrigerant (HFC-134a or HFO-1234yf) suffers significantly diminishment of heating capacity and system efficiency as the ambient temperature decreases. Natural refrigerant CO2 (GWP = 1) is considered as a promising alternative to HFC-134a in automobile air conditioning (MAC) applications with environmentally friendly advantage. In addition, CO2 automobile heat pump system is a promising heat pump technology for EVs with great heating advantages in a cold climate. This study aims to investigate the supercritical heat transfer characteristics of a compact micro-channel gas cooler applied in an automobile CO2 heat pump system. A simulation model of automobile gas cooler was developed by using segment-by-segment method, and validated by experimental results from Series Gas cooler (SGC) and One Gas cooler (OGC) CO2 heat pump systems. The error of heating capacity between calculated results and experimental results was less than 7%.
Technical Paper

Robust Speed Synchronization Control for an Integrated Motor-Transmission Powertrain System with Feedback Delay

2019-04-02
2019-01-1206
Motor speed synchronization is important in gear shifting of emerging clutchless automated manual transmissions for battery electric vehicles (BEV) and other kinds of parallel shaft-based powertrains for hybrid electric vehicles (HEV). Difficulties of the problem mainly come from random delay induced by network communication and unknown load torques from air drag, oil drag, and friction torques, etc. To deal with these two factors, this paper proposes a robust speed synchronization controller based on act-and-wait control and disturbance observer. The former is a kind of periodical controller specially for regulating problems with feedback delay while the latter is a technique for active disturbance rejection. Firstly, the dynamic model of the motor shaft is formulated, and the system parameters are offline identified. The speed tracking problem is then transformed into a regulating one.
X