Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Preliminary Testing of n-Butanol HCCI on High Compression Ratio Diesel Engines

2019-04-02
2019-01-0577
The control of combustion phasing in homogeneous charge compression ignition (HCCI) combustion is investigated with neat n-butanol in this work. HCCI is a commonly researched combustion mode, owing to its improved thermal efficiency over conventional gasoline combustion, as well as its lower nitrogen oxide (NOx) and particulate matter emissions compared to those of diesel combustion. Despite these advantages, HCCI lacks successful widespread implementation with conventional fuels, primarily due to the lack of effective combustion phasing control. In this preliminary study, chemical kinetic simulations are conducted to study the auto-ignition characteristics of n-butanol under varied background pressures, temperatures, and dilution levels using established mechanisms in CHEMKIN software. Increasing the pressure or temperature lead to a shorter ignition delay, whereas increasing the dilution by the application of exhaust gas recirculation (EGR) leads to a longer ignition delay.
Technical Paper

A Feasibility Study of Using DI Butanol as an Ignition Source for Dual-Fuel Combustion

2017-03-28
2017-01-0770
The combustion of dual-fuel engines usually uses a pilot flame to burn out a background fuel inside a cylinder under high compression. The background fuel can be either a gaseous fuel or a volatile liquid fuel, commonly with low reactivity to prevent premature combustion and engine knocking; whereas the pilot flame is normally set off with the direct injection of a liquid fuel with adequate reactivity that is suitable for deterministic auto-ignition with a high compression ratio. In this work, directly injected butanol is used to generate the pilot flame, while intake port injected ethanol or butanol is employed as the background fuel. Compared with the conventional diesel-only combustion, dual-fuel operations not only broaden the fuel applicability, but also enhance the potential for clean combustion, in high efficiency engines. The amount of background fuel and the scheduling of pilot flame are investigated through extensive laboratory experiments.
X