Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Evaluation of closed-loop combustion phase optimization for varying fuel compensation and cylinder balancing in a HD SI-ICE

2024-04-09
2024-01-2837
Alternative fuels, such as natural and bio-gas, are attractive options for reducing greenhouse gas emissions from combustion engines. However, the naturally occurring variation in gas composition poses a challenge and may significantly impact engine performance. The gas composition affects fundamental fuel properties such as flame propagation speed and heat release rate. Deviations from the gas composition for which the engine was calibrated result in changes in the combustion phase, reducing engine efficiency and increasing fuel consumption and emissions. However, the efficiency loss can be limited by estimating the combustion phase and adapting the spark timing, which could be implemented favorably using a closed-loop control approach. In this paper, we evaluate the efficiency loss resulting from varying gas compositions and the benefits of using a closed-loop controller to adapt the spark timing to retain the nominal combustion phase.
Technical Paper

Investigation of Combustion Characteristics of a Fuel Blend Consisting of Methanol and Ignition Improver, Compared to Diesel Fuel and Pure Methanol

2024-04-09
2024-01-2122
The increasing need to reduce greenhouse gas emissions and shift away from fossil fuels has raised an interest for methanol. Methanol can be produced from renewable sources and can drastically lower soot emissions from compression ignition engines (CI). As a result, research and development efforts have intensified focusing on the use of methanol as a replacement for diesel in CI engines. The issue with methanol lies in the fact that methanol is challenging to ignite through compression alone, particularly at low-load and cold starts conditions. This challenge arises from methanol's high octane number, low heating value, and high heat of vaporization, all of which collectively demand a substantial amount of heat for methanol to ignite through compression.
Technical Paper

Experimental Investigation of Pilot Injection Strategies to Aid Low Load Compression Ignition of Neat Methanol

2024-04-09
2024-01-2119
The growing demand to lower greenhouse gas emissions and transition from fossil fuels, has put methanol in the spotlight. Methanol can be produced from renewable sources and has the property of burning almost soot-free in compression ignition (CI) engines. Consequently, there has been a notable increase in research and development activities directed towards exploring methanol as a viable substitute for diesel fuel in CI engines. The challenge with methanol lies in the fact that it is difficult to ignite through compression alone, particularly in low-load and cold start conditions. This difficulty arises from methanol's high octane number, relatively low heating value, and high heat of vaporization, collectively demanding a considerable amount of heat for methanol to ignite through compression. Previous studies have addressed the use of a pilot injection in conjunction with a larger main injection to lower the required intake air temperature for methanol to combust at low loads.
Technical Paper

Numerical Study on the Design of a Passive Pre-Chamber for a Heavy-Duty Hydrogen Combustion Engine

2024-04-09
2024-01-2112
Lean-burn hydrogen internal combustion engines are a good option for future transportation solutions since they do not emit carbon-dioxide and unburned hydro-carbons, and the emissions of nitric-oxides (NOx) can be kept low. However, under lean-burn conditions the combustion duration increases, and the combustion stability decreases, leading to a reduced thermal efficiency. Turbulent jet ignition (TJI) can be used to extend the lean-burn limit, while decreasing the combustion duration and improving combustion stability. The objective of this paper is to investigate the feasibility of a passive pre-chamber TJI system on a heavy-duty hydrogen engine under lean-burn conditions using CFD modelling. The studied concept is mono-fuel, port-fuel injected, and spark ignited in the pre-chamber. The overall design of the pre-chamber is discussed and the effect of design parameters on the engine performance are studied.
Technical Paper

Impact of Deposit Control Additives on Particulate Emissions and Fuel Consumption in Pre-used Vehicles with Gasoline Direct Injection Engines

2024-04-09
2024-01-2127
Injector nozzle deposits can have a profound effect on particulate emissions from vehicles fitted with Gasoline Direct Injection (GDI) engines. Several recent publications acknowledge the benefits of using Deposit Control Additives (DCA) to maintain or restore injector cleanliness and in turn minimise particulates, but others claim that high levels of DCA could have detrimental effects due to the direct contribution of DCA to particulates, that outweigh the benefits of injector cleanliness. Much of the aforementioned work was conducted in laboratory scenarios with model fuels. In this investigation a fleet of 7 used GDI vehicles were taken from the field to determine the net impact of DCAs on particulates in real-world scenarios. The vehicles tested comprised a range of vehicles from different manufacturers that were certified to Euro 5 and Euro 6 emissions standards.
Technical Paper

Explicit equations for designing surrogate gasoline formulations containing ethanol, isopentane, n-heptane, isooctane and toluene

2023-09-29
2023-32-0164
It is useful for research purposes to define simple surrogate gasoline compositions that can replicate the chemical and physical properties of more complex mixtures. Ethanol is used in commercially available gasolines around the world as part of the pathway to the decarbonization of the transportation sector. In this study equations were developed to predict the Research Octane Number (RON), Motor Octane Number (MON) and Dry Vapour Pressure Equivalent (DVPE) of gasoline surrogates containing ethanol (10-25 vol%), isopentane, n-heptane, isooctane and toluene. The non-linear blending behaviour associated with ethanol is found to necessitate coefficients in the equations developed for MON that are a function of ethanol content, whereas surprisingly the equations for RON and DVPE do not need this added level of complexity.
Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

Experimental Investigation of Glycerol Derivatives as Low-Concentration Additives for Diesel Fuel

2023-08-28
2023-24-0095
The worldwide adoption of renewable energy mandates, together with the widespread utilization of biofuels has created a sharp increase in the production of biodiesel (fatty acid alkyl esters). As a consequence, the production of glycerol, the main by-product of the transesterification of fatty acids, has increased accordingly, which has led to an oversupply of that compound on the markets. Therefore, in order to increase the sustainability of the biodiesel industry, alternative uses for glycerol need to be explored and the production of fuel additives is a good example of the so-called glycerol valorization. The goal of this study is therefore to evaluate the suitability of a number of glycerol-derived compounds as diesel fuel additives. Moreover, this work concerns the assessment of low-concentration blends of those glycerol derivatives with diesel fuel, which are more likely to conform to the existing fuel standards and be used in unmodified engines.
Technical Paper

Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

2023-08-28
2023-24-0048
This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used.
Technical Paper

The Influence of Ignition Control Parameters on Combustion Stability and Spark plug Wear in a Large Bore Gas Engine

2023-04-11
2023-01-0257
The paper presents novel studies on the impact of different ignition control parameters on combustion stability and spark plug wear. First, experimental results from a 32.4-liter biogas fueled large bore single cylinder spark ignition engine are discussed. Two different ignition systems were considered in the experiment: a DC inductive and an AC capacitive. The spark plugs used in the experiment were of dual-iridium standard J-gap design of different electrode gaps. Test results show the importance of different degrees of freedom to control a spark. A robust ignition is found to be achieved by using a very short spark duration, which in turn reduces total energy discharge at the gap. Further observations reveal that once a stable and self-propagating flame kernel is developed, it becomes independent of the spark energy further added to the gap. Finally, results from the spark plug wear tests using a pressurized rig chamber are discussed.
Technical Paper

An Optical Study of the Effects of Diesel-like Fuels with Different Densities on a Heavy-duty CI Engine with a Wave-shaped Piston Bowl Geometry

2023-04-11
2023-01-0261
The novel wave-shaped bowl piston geometry design with protrusions has been proved in previous studies to enhance late-cycle mixing and therefore significantly reduce soot emissions and increase engine thermodynamic efficiency. The wave-shaped piston is characterized by the introduction of evenly spaced protrusions around the inner wall of the bowl, with a matching number with the number of injection holes, i.e., flames. The interactions between adjacent flames strongly affect the in-cylinder flow and the wave shape is designed to guide the near-wall flow. The flow re-circulation produces a radial mixing zone (RMZ) that extends towards the center of the piston bowl, where unused air is available for oxidation promotion. The waves enhance the flow re-circulation and thus increase the mixing intensity of the RMZ.
Journal Article

Fresh and Aged Organic Aerosol Emissions from Renewable Diesel-Like Fuels HVO and RME in a Heavy-Duty Compression Ignition Engine

2023-04-11
2023-01-0392
A modern diesel engine is a reliable and efficient mean of producing power. A way to reduce harmful exhaust and greenhouse gas (GHG) emissions and secure the sources of energy is to develop technology for an efficient diesel engine operation independent of fossil fuels. Renewable diesel fuels are compatible with diesel engines without any major modifications. Rapeseed oil methyl esters (RME) and other fatty acid methyl esters (FAME) are commonly used in low level blends with diesel. Lately, hydrotreated vegetable oil (HVO) produced from vegetable oil and waste fat has found its way into the automotive market, being approved for use in diesel engines by several leading vehicle manufacturers, either in its pure form or in a mixture with the fossil diesel to improve the overall environmental footprint. There is a lack of data on how renewable fuels change the semi-volatile organic fraction of exhaust emissions.
Technical Paper

Experimental and Numerical Analysis of an Active Pre-Chamber Engine Fuelled with Natural Gas

2023-04-11
2023-01-0185
Increasingly stringent pollutant and CO2 emission standards require the car manufacturers to investigate innovative solutions to further improve the fuel economy and environmental impact of their fleets. Nowadays, NOx emissions standards are stringent for spark-ignition (SI) internal combustion engines (ICEs) and many techniques are investigated to limit these emissions. Among these, an extremely lean combustion has a large potential to simultaneously reduce the NOx raw emissions and the fuel consumption of SI ICEs. Engines with pre-chamber ignition system are promising solutions for realizing a high air-fuel ratio which is both ignitable and with an adequate combustion speed. In this work, the combustion characteristics of an active pre-chamber system are experimentally investigated using a single-cylinder research engine. The engine under exam is a large bore heavy-duty unit with an active pre-chamber fuelled with compressed natural gas.
Technical Paper

Low Load Ignitability of Methanol in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1093
An increasing need to lower greenhouse gas emissions, and so move away from fossil fuels like diesel and gasoline, has greatly increased the interest for methanol. Methanol can be produced from renewable sources and eliminate soot emissions from combustion engines [1]. Since compression ignition (CI) engines are used for the majority of commercial applications, research is intensifying into the use of methanol, as a replacement for diesel fuel, in CI engines. This includes work on dual-fuel set-ups, different fuel blends with methanol, ignition enhancers mixed with methanol, and partially premixed combustion (PPC) strategies with methanol. However, methanol is difficult to ignite, using compression alone, at low load conditions. The problem comes from methanol’s high octane number, low lower heating value and high heat of vaporization, which add up to a lot of heat being needed from the start to combust methanol [2].
Technical Paper

An Experimental Investigation of Directly Injected E85 Fuel in a Heavy-Duty Compression Ignition Engine

2022-08-30
2022-01-1050
A commercially available fuel, E85, a blend of ~85% ethanol and ~15% gasoline, can be a viable substitute for fossil fuels in internal combustion engines in order to achieve a reduction of the greenhouse gas (GHG) emissions. Ethanol is traditionally made of biomass, which makes it a part of the food-feed-fuel competition. New processes that reuse waste products from other industries have recently been developed, making ethanol a renewable and sustainable second-generation fuel. So far, work on E85 has focused on spark ignition (SI) concepts due to high octane rating of this fuel. There is very little research on its application in CI engines. Alcohols are known for low soot particle emissions, which gives them an advantage in the NOx-soot trade-off of the compression ignition (CI) concept.
Technical Paper

Control of Diesel Engine Exhaust Gas Recirculation System Deposits with Fuel Additives

2022-08-30
2022-01-1072
Exhaust Gas Recirculation (EGR) is employed in diesel engines to reduce engine-out NOx emissions. Despite the concerted design efforts of manufacturers, high-pressure Exhaust Gas Recirculation (HP-EGR) systems can be susceptible to fouling as the particulate matter, hydrocarbons and other entrained species deposit from the exhaust gas flow as it cools on its passage through the EGR system. Such deposits can lead to a number of problems including deterioration of emissions, fuel efficiency, performance and drivability, as well as breakdowns. The development of an engine test method to enable the study of the impact of fuel on deposits in the HP-EGR system was reported in 2020. In the test, a 4-cylinder light-duty diesel engine of 1.6L displacement runs at conditions conducive to EGR deposit formation over 24 hours and the impact of fuels on deposit formation is determined through weighing of the EGR system components before and after the test.
Journal Article

Development and Application of an Engine Test Method to Rate the Internal Injector Deposit Formation of Diesel Fuels and Additives

2022-08-30
2022-01-1070
Design efforts to improve the hydraulic efficiency of high-pressure diesel fuel systems and thus further improve overall engine efficiency have resulted in the utilisation of low-spill control valves and reduced injector component clearances to reduce general leakage losses. Overall, these advances have contributed significantly to the high efficiency diesel engines of today. However, the combination of very high fuel pressures, cavitation and low fuel leakage volumes increases the heating of the remaining fuel, increasing temperature and, in turn, the propensity for deposits to form inside the injector. This deposit phenomenon is commonly known as Internal Diesel Injector Deposits (IDID) and can cause rough engine running and failed engine starts requiring injector cleaning or replacement. Methods studying this phenomenon are under development in the industry.
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

Conceptual Model for the Start of Combustion Timing in the Range from RCCI to Conventional Dual Fuel

2022-03-29
2022-01-0468
In the challenge to reduce CO2, NOx and PM emissions, the application of natural gas or biogas in engines is a viable approach. In heavy duty and marine, either a conventional dual fuel (CDF), or a reactivity-controlled compression ignition (RCCI) approach is feasible on existing diesel engines. In both technologies a pilot diesel injection is used to ignite the premixed natural gas. However, the influence of injection-timing and -pressure on the start of combustion timing (SOC) is opposite between both modes. For a single operating point these relations can be explained by a detailed CFD simulation, but an intuitive overall explanation is lacking. This makes it difficult to incorporate both modes into one engine application, using a single controller. In an experimental campaign by the authors, on a medium speed engine, the lowest emissions were found to be very close to the SOC corresponding to the transition from RCCI to CDF.
Technical Paper

Control Oriented Engine Model Development for Model-Based PPC Control

2022-03-29
2022-01-0480
A model-based control approach is proposed to give proper reference for the feed-forward combustion control of Partially Pre-mixed Combustion (PPC) engines. The current study presents a simplified first principal model, which has been developed to provide a base estimation of the ignition properties. This model is used to describe the behavior of a single-cylinder heavy-duty diesel engine fueled with a mix of bio-butanol and n-heptane (80vol% bio-butanol and 20 vol% n-heptane). The model has been validated at 8 bar gross Indicated Mean Effective Pressure (gIMEP) in PPC mode. Inlet temperature and pressure have been varied to test the model capabilities. First the experiments were conducted to generate reference points with BH80 under PPC conditions. And then CFD simulations were conducted to give initial parameter set up, e.g. fuel distribution, zone dividing, for the multi-zone model.
X