Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Analysis and optimization for generated axial force of Adjustable Angular Roller tripod joint

2024-04-09
2024-01-2887
The tripod constant velocity joint (CVJ) has been widely used in mechanical systems due to its strong load-bearing capacity, high efficiency, and reliability. It has become the most commonly used plunging-type CVJ in automotive drive-shaft. A generated axial force (GAF) with a third-order characteristic of driven shaft speed is caused by the internal friction and motion characteristics in a tripod joint. The large GAF has a negative impact on the NVH (Noise, Vibration, and Harshness) characteristics of automobiles, and this issue is particularly prominent in new energy vehicles. A multi-body dynamic model of the Adjustable Angular Roller (AAR) tripod CVJ is developed to calculate and analyze the GAF. To describe the internal motion of the AAR tripod CVJ, the contact interactions between the roller and the track or the trunnion were modeled using non-linear equivalent spring-damping models for contact collision forces and modified Coulomb friction model for friction.
Technical Paper

Analysis of Low-Frequency Brake Noise for Drum Brakes on Semi-Trailers

2024-04-09
2024-01-2895
A road test on semi-trailers is carried out, and accelerations of some characteristic points on the braking system,axles,and truck body is measured,also brake pressure and noise around the support frame is acquired.The measured data was analyzed to determine the causes of the brake noise, and the mechanism of the noise of the drum brake of semi-trailers during low-speed braking was investigated. The following conclusions are obtained: (1) Brake noise of the drum brake of the semi-trailer at low-frequency is generated from vibrations of the brake shoes, axle, and body, and the vibration frequency is close to 2nd natural frequency of the axle. (2) Brake noise is generated from stick-slip motion between the brake shoes and the brake drum, where the relative motion between the brake drum and the brake shoes is changed alternately with sliding and sticking, resulting in sudden changes in acceleration and shock vibration.
Technical Paper

Measurement and Modeling for Creep Groan of a Drum Brake in Trucks

2024-04-09
2024-01-2351
An experiment is carried out to measure creep groan of a drum brake located in a trailer axle of a truck. The noise nearby the drum brake and accelerations on brake shoes, axle and trailer frame are collected to analyze the occurring conditions and characteristics of the creep groan. A multi-body dynamics model with 1/4 trailer chassis structures is established for analyzing brake component vibrations that generates the creep groan. In the model, the contact force between brake cam and brake shoes, the contact friction characteristics between brake linings and inner circular surface of brake drum, and the properties of chassis structure are included. Dynamic responses of brake shoes, axle and trailer frame during the braking process are estimated using the established model and the responses are compared with the measured results, which validate the model.
Technical Paper

Parameter Identification of Constitute Model of Glass Fiber Reinforced Polypropylene under Adiabatic Temperature Rise Loads

2024-04-09
2024-01-2355
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective.
Technical Paper

Modeling and Control Strategy for Engine Thermal Management System

2024-04-09
2024-01-2234
In order to study the influence of engine silicone oil fan clutch on the performances of engine cooling system under different control strategies, a model of engine cooling system for light truck is established. The working characteristics of the silicone oil clutch and the measured performance parameters of the cooling system components are taken into account in our proposed model. Modeling methods for different silicone oil fan control strategies are also given. Using the established model, the performance parameters under different vehicle speeds, such as coolant temperature of engine outlet and power consumption of cooling fan, are calculated and analyzed. The in-suite measurement of the engine cooling system is carried out to get the temperatures of engine coolant inlet and outlet from engine ECU. The model is validated by the comparison between the calculation and the measured results.
Technical Paper

A Method for Predicting Fatigue Life of Rubber Isolators at Power Spectral Density Load

2024-04-09
2024-01-2261
Rubber isolators are widely used under random vibrations. In order to predict their fatigue life, a study on the fatigue analysis methodology for rubber isolators is carried out in this paper. Firstly, taking a mount used for isolating air conditioning compressor vibrations as studying example, accelerations versus time of rubber isolator at both sides are acquired for a car under different running conditions. The acceleration in time domain is transformed to frequency domain using the Fourier transform, and the acceleration power spectral density (PSD) is the obtained. Using the PSD as input, fatigue test is carried for the rubber isolator in different temperature and constant humidity conditions. A finite element model of the rubber isolator using ABAQUS is established for estimating fatigue life, and model validity is verified through static characteristic testing. Dynamic responses of the rubber isolator at frequency domain are calculated if a unit load is applied.
Technical Paper

Fatigue Life Analysis Methods for Rolling Lobe Air Spring

2024-04-09
2024-01-2259
The fatigue prediction model of an air spring based on the crack initiation method is established in this study. Taking a rolling lobe air spring with an aluminum casing as the studying example, a finite element model for analyzing force versus displacement is developed. The static stiffness and dimensional parameters of limit positions are calculated and analyzed. The influence of different modeling methods of air springs bellow are compared and analyzed. Static stiffness measurement of an air spring is conducted, and the calculation results and the measured results of the static stiffness are compared. It is shown that the relative error of the measured stiffness and calculated stiffness is within 1%. The Abaqus post-processing stage is redeveloped in Python language.
Technical Paper

Numerical Investigation on Heat Dissipation Performance of Multi-Fan Cooling Module

2024-04-09
2024-01-2587
To study the heat dissipation performance of the multi-fan cooling module composed of multiple fans and a radiator, numerical models of the radiator and the multi-fan cooling module were established, and heat dissipation performance prediction analysis and application analysis were conducted. In modeling, the Effectiveness-Number of Transfer Units (ε − NTU) method is used to predict the heat dissipation performance of the radiator. The aerodynamic performance of the fan at any speed is obtained by the similarity theorem using the data obtained from the tests at a certain speed. The influence between the fan and the radiator was established by using the flow addition scheme. To validate the established model, heat dissipation performance using 36 radiators and 11 multi-fan cooling modules is measured, and the measured data are compared with the calculations.
Technical Paper

Optimization Methods to Enhance Performance of a Powertrain Mounting System at Key on and Key off

2024-04-09
2024-01-2389
To enhance the transient vibration performance of the vehicle at key on and key off, a method for optimizing mount parameters of a powertrain mounting system (PMS) is proposed. Uncertainties of mount parameters widely exist in a PMS, so a method for optimizing mount parameters of a PMS, which treats the mount parameters of a PMS as uncertain, is also proposed in this paper. Firstly, a 13 degrees of freedom (DOFs) model including car body with 3 DOFs, a PMS with 6 DOFs and unsprung mass with 4 DOFs is established, and the acceleration of the active side of mounts is calculated. An experiment is carried out to measure the accelerations located at active and passive sides of each mount and the accelerations of seat track. A comparison is made between the measured and estimated accelerations, and the proposed model is validated. Two optimization methods for the PMS are proposed based on the developed 13 DOFs model.
Technical Paper

Dynamic Performance Optimization of Ball Joints with Cross Groove for Automotive Driveshaft System

2024-04-09
2024-01-2438
The ball joint with cross groove offers both angular and plunging motion. When transmitting the same torque, the cross groove ball joint is lighter than other plunging Constant Velocity Joints (CVJs). It is crucial for the design of the joint and enhancing the contact fatigue life of the raceway to accurately estimate component loads of the ball joints with cross groove. In this study, the transmission efficiency of the joint and the peak value of contact force between ball and the track are used as evaluation indexes for characterizing dynamic performance of the joint. A multibody dynamic model of the joint is established to calculate its dynamic performance. In the model, the contact properties and friction characteristics of the internal structures were modeled, and a nonlinear equivalent spring and damping model was adopted for estimating the contact force. The transmission efficiency loss of the cross groove joint was measured and compared with the calculated values.
Technical Paper

Topological Optimization Design of Cooling Channel for Liquid-Cooled Plate of Power Battery

2024-04-09
2024-01-2676
The influence of the channels of a liquid-cooled plate on the heat dissipation performance of battery module is investigated in this paper. A topology optimization method for obtaining channel configurations of the liquid cooled plate is presented. Firstly, the battery pack cooling system test platform is built to test the flow resistance of the liquid-cooled plate under different flow rates and the maximum temperature and temperature difference of the battery under different working conditions. Secondly, the geometric model of the battery pack is established, and CFD software is used to simulate according to the test conditions. The test results validate the correctness of the model. Then, taking the average surface temperature of the liquid-cooled plate as the optimization objective, the topology optimization structure of the liquid-cooled plate is obtained by variable density method.
Technical Paper

Performance Calculation and Analysis of Engine Cooling Fan Based on Bidirectional Fluid Structure Coupling

2024-04-09
2024-01-2813
When the automotive engine cooling fan is actually working, there is a process of interaction and coupling between the fluid and solid domains on the blades. In order to study the influence of the "fluid structure coupling" effect on the aerodynamic and structural performance of fans during operation, a fan performance calculation model was established with and without considering the fluid structure coupling effect of fans. We conducted aerodynamic performance tests on fans, tested the relationship between fan flow rate, static pressure, transmission efficiency and fan speed, and compared and analyzed the calculated fan performance. The aerodynamic performance and structural deformation of the fan were calculated under different flow rates, rotational speeds and environmental temperatures, with and without considering the coupling of fan blades and airflow. The calculation results were compared and analyzed.
Technical Paper

Analysis and Experimental Research on Whine Noise of the Engine Balance Shaft Gear System

2023-05-08
2023-01-1152
An Inline 4-cylinder engine is equipped with second-order balance shafts. When the engine is running under no-load acceleration conditions, the gear system of the balance shaft generated whine noise. In this paper, an analysis and experiment method for reducing the whine noise is presented. First, a flexible multi-body dynamic model of the engine is established, which includes shaft and casing deformation, micro-modification of the gears. Taking the measured cylinder pressure as input, the load on each gear of balance shaft gear system is calculated. In addition, the influence of tooth surface micro-modification on the meshed noise was analyzed. The results show that the dynamic meshing force between the crank gear and the shim gear is large under the original tooth surface micro-modification parameters, which is the main reason of the whine noise.
Technical Paper

Structural Vibration Analysis and Sound Quality Improvement for a Four-Cylinder Engine

2023-05-08
2023-01-1153
An Inline 4-cylinder engine is equipped with second-order balance shafts.When the engine is running under full load in 5000rpm,the engine generated severe structural radiation noise.The bench test analysis shows that the main reason is the resonance of the engine near 800Hz and 1500Hz. In this paper, a method for modeling and analyzing the vibration of the engine structure is proposed, and the sound quality of the engine is evaluated and imporved by the Moore–Glasberg loudness method. Firstly, the finite element model of the engine was established, and the experimental modes of the engine casing assembly, crankshaft and balance shaft were measured. The natural frequencies and modal shapes obtained by calculation and experiment were compared, which validates the established finite element model.Secondly, a flexible multi-body dynamic model of the engine was established.
Technical Paper

A Method for Identifying Tortuosity, Viscous Characteristic Length and Thermal Characteristic Length of Kapok Mixed Fiber Porous Materials

2023-05-08
2023-01-1058
Tortuosity, viscous characteristic length and thermal characteristic length are three important parameters for estimating the acoustic performance of porous materials, and it is usually measured by ultrasonic measurement technology, which is costly. In this paper, a method for identifying the tortuosity, viscous characteristic length and thermal characteristic length for the porous fiber materials mixed with kapok fiber and two kinds of other fiber materials is proposed. The tortuosity is calculated by using the porosity and high-frequency normal sound absorption coefficient of porous materials. According to the normal sound absorption coefficient curve of porous materials under plane wave incidence, viscous characteristic length and thermal characteristic length are identified through the Johnson-Champoux-Allard-Lafarge (JCAL) model and genetic algorithm by using the measured parameters, the calculated tortuosity and static thermal permeability.
Technical Paper

Sound Transmission Loss of Acoustic Metamaterial with Lightweight Frame and Hard Membrane-Like Material

2023-05-08
2023-01-1057
To reduce the noise in the frequency range of 100Hz~1000Hz, a metamaterial structure composed of lightweight frame, hard membrane-like material and added mass is proposed in this paper. The advantage of this structure is that it is lightweight and the membrane-like material does not need to be stressed in advance. Finite element method (FEM) and experiment are used to investigate the sound transmission loss (STL) performance of the metamaterial structure. The results show that the peak STL is caused by the local resonance of the added mass and the membrane-like material. The valley versus frequency results from the resonance frequencies of metamaterial structure, and it is divided into three resonance frequencies: resonance frequencies from added mass, membrane-like material and frame.
Technical Paper

Analysis of Noise of Hydraulic Mounts from Decoupler-Cage Hitting

2023-05-08
2023-01-1151
In this paper, the influence of the decoupler-cage structure on the hitting noise of the hydraulic mount is studied, the abnormal noise of the hydraulic mount is mainly caused by the collision impact between the decoupler and the cage, the hitting noise was simulated and evaluated using calculation and experiment. a finite element model of the collision impact between the decoupler and the cage is developed, and an explicit finite element analysis is performed to obtain the time history of the vibration acceleration of the model, which is used as the boundary condition of the noise analysis. The acoustic boundary element method is used to analyze the impact noise of the decoupler-cage, and the frequency domain distribution characteristics of the impact sound pressure are obtained. The influence of different decoupler structure on the hitting noise is studied, and the recommended values for each parameter for a structure are given.
Technical Paper

Parameters Identification of Mooney-Rivlin Model for Rubber Mount Based on Surrogate Model

2023-05-08
2023-01-1150
As an important vibration damping element in automobile, the rubber mount can effectively reduce the vibration transmitted from the engine to the frame. In this study, a method of parameters identification of Mooney-Rivlin model by using surrogate model was proposed to more accurately describe the mechanical behavior of mount. Firstly, taking the rubber mount as the research object, the stiffness measurement was carried out. And then the calculation model of the rubber mount was established with Mooney-Rivlin model. Latin hypercube sampling was used to obtain the force and displacement calculation data in different directions. Then, the parameters of the Mooney-Rivlin model were taken as the design variables. And the error of the measured force-displacement curve and the calculated force-displacement curve was taken as the system response. Two surrogate models, the response surface model and the back-propagation neural network, were established.
Technical Paper

Material Parameter Identification Method for Rubber Mount Constitutive Equation

2023-05-08
2023-01-1154
As an important vibration damping element in automobile industries, the vibration transmitted from the engine to the frame can be reduced effectively because of rubber mount. The influence of preload on the static characteristics of rubber mount and the constitutive parameters identification of Mooney-Rivlin model under preload were studied. Firstly, a test rig for stiffness measurement of rubber mount under preload was designed and the influence of preload on the force versus displacement of mount was studied. Then, the model for estimating force versus displacement of rubber mount was established. The response surface model for parameters identification was established. And the identification method for estimating parameters of Mooney-Rivlin model of rubber mount was proposed with the crow search algorithm. Taking the rubber mount as the research object and taking the parameters of Mooney-Rivlin model as the variables.
Technical Paper

Research on Thermal Recession Compensation Method of Disc Brakes

2023-04-11
2023-01-0668
If a car is braked frequently or at high speed, the thermal decay of brake system performance appears, which reduces the braking performance of the car. To compensate brake moment reduction during braking at thermal decay of brake system, a compensation strategy of brake moment is designed by using “feedforward +PID feedback” to pressure at wheel braking cylinder. The trigger and exit conditions of the strategy for the wheel cylinder pressure are proposed based on the threshold. A vehicle model consisting braking system is established if a vehicle runs at straight line, and the braking distance and braking acceleration are estimated, the results shown that the thermal decay compensation control strategy proposed in this paper can reduce the braking distance and braking time.
X