Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Effect of Water on Soot Formation Chemistry

2005-10-24
2005-01-3850
A combined, experimental and numerical program is presented. This work summarizes an internal research effort conducted at Southwest Research Institute. Meeting new, stringent emissions regulations for diesel engines requires a way to reduce NOx and soot emissions. Most emissions reduction strategies reduce one pollutant while increasing the other. Water injection is one of the few promising emissions reduction techniques with the potential to simultaneously reduce soot and NOx in diesel engines. While it is widely accepted that water reduces NOx via a thermal effect, the mechanisms behind the reduction of soot are not well understood. The water could reduce the soot via physical, thermal, or chemical effects. To aid in developing water injection strategies, this project's goal was to determine how water enters the soot formation chemistry.
Technical Paper

Performance Predictions for High Efficiency Stoichiometric Spark Ignited Engines

2005-04-11
2005-01-0995
Southwest Research Institute (SwRI) is exploring the feasibility of extending the performance and fuel efficiency of the spark ignition (SI) engine to match that of the emission constrained compression (CI) engine, whilst retaining the cost effective 3-way stoichiometric aftertreatment systems associated with traditional SI light duty engines. The engine concept, which has a relatively high compression ratio and uses heavy EGR, is called “HEDGE”, i.e. High Efficiency Durable Gasoline Engine. Whereas previous SwRI papers have been medium and heavy duty development focused, this paper uses results from simulations, with some test bed correlations, to predict multicylinder torque curves, brake thermal efficiency and NOx emissions as well as knock limit for light and medium duty applications.
Technical Paper

Investigation of Intake Timing Effects on the Cold Start Behavior of a Spark Ignition Engine

1999-10-25
1999-01-3622
Recent advances in Variable Valve Actuation (VVA) methods have led to development of optimized valve timing strategies for a broad range of engine operating conditions. This study focuses on the cold-start period, which begins at engine cranking and lasts for approximately 1 minute thereafter. Cold-start is characterized by poor mixture preparation due to low component temperatures, aggravated by fixed valve timing which has historically been compromised to give optimal warm engine operation. In this study, intake cam phasing was varied to explore the potential benefit in hydrocarbon emissions and driveability obtainable for cold-start. A simple experimental approach was used to investigate the potential emissions benefits realizable through intake cam phasing. High speed cylinder pressure and Fast Flame Ionization Detector (FFID) engine-out hydrocarbon (HC) measurements were made to characterize instantaneous cold-start emissions and driveability.
Technical Paper

Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications

1999-10-25
1999-01-3682
Large reductions in low-load NOx emissions can be obtained by replacing conventional Diesel or spark ignited combustion by HCCI combustion in reciprocating engines. Currently, HCCI combustion is limited to operating conditions with lean air/fuel ratios or large amounts of EGR. However, a numerical model shows that, even if high equivalence ratio HCCI operation were satisfactorily attained, the NOx reduction potential vs. DI-Diesel combustion would be much smaller. Thus, high-load HCCI operation may best be obtained through highly boosted fuel-lean operation. Alternatively, HCCI combustion may be suited well for “dual mode” engine applications, in which spark ignition or conventional Diesel combustion is used to obtain full load. Avoiding wall impingement with heavy fuels is critical for achieving good emissions and fuel consumption, and it appears that a large degree of mixture inhomogeneity can be tolerated from a NOx benefit standpoint.
X