Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT™) - Part IV

2001-09-24
2001-01-3527
This paper reports on the fourth part of a continued study on further research and development with the automated Ignition Quality Tester (IQT™). Research over the past six years (reported in SAE papers #961182, 971636 and 1999-01-3591) has demonstrated the capabilities of this automated apparatus to measure the ignition quality and accurately determine a derived cetane number (DCN) for a wide range of middle distillate and non-conventional diesel fuels. The present paper reports on a number of separate investigations supporting these continued studies.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT) - Part II

1997-05-01
971636
A combustion-based analytical method, initially developed by the Southwest Research Institute (SwRI) and referred to as the Constant Volume Combustion Apparatus (CVCA), has been further researched/developed by an SwRI licensee (Advanced Engine Technology Ltd.). This R&D has resulted in a diesel fuel Ignition Quality Tester (IQT) that permits rapid and precise determination of the ignition quality of middle distillate and alternative fuels. Its features, such as low fuel volume requirement, complete test automation, and self-diagnosis, make it highly suitable for commercial oil industry and research applications. A preliminary investigation, reported in SAE paper 961182, has shown that the IQT results are highly correlated to the ASTM D-613 cetane number (CN). The objective of this paper is to report on efforts to further refine the original CN model and report on improvements to the IQT fuel injection system.
Technical Paper

Investigation of Diesel Spray Structure and Spray/Wall Interactions in a Constant Volume Pressure Vessel

1994-10-01
941918
High-speed movie films, and laser-diffraction drop sizing were used to evaluate the structure, penetration rate, cone angle, and drop size distribution of diesel sprays in a constant volume pressure vessel. As further means of evaluating the data, comparisons are made between the film measurements, and calculations from a dense gas jet model. In addition to the high-speed film data that describes the overall structure of the spray as a function of time, a laser diffraction instrument was used to measure drop size distribution through a cross-section of the spray. In terms of the growth of the total spray volume (a rough measure of the amount of air entrained in the spray), spray impingement causes an initial delay, but generally the same overall growth rate as an equivalent unimpeded spray. Agreement between measurements and calculations is excellent for a diesel spray with a 0.15 mm D orifice and relatively high injection pressures.
X