Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of a Natural Gas Engine with Diesel Engine-like Efficiency Using Computational Fluid Dynamics

2019-04-02
2019-01-0225
Present day natural gas engines have a significant efficiency disadvantage but benefit with low carbon-dioxide emissions and cheap three-way catalysis aftertreatment. The aim of this work is to improve the efficiency of a natural gas engine on par with a diesel engine. A Cummins-Westport ISX12-G (diesel) engine is used for the study. A baseline model is validated in three-dimensional Computational Fluid Dynamics (CFD). The challenge of this project is adapting the diesel engine for the natural gas fuel, so that the increased squish area of the diesel engine piston can be used to accomplish faster natural gas burn rates. A further increase efficiency is achieved by switching to D-EGR technology. D-EGR is a concept where one or more cylinders are run with excess fueling and its exhaust stream, containing H2 and CO, is cooled and fed into the intake stream. With D-EGR although there is an in-cylinder presence of a reactive H2-CO reformate, there is also higher levels of dilution.
Technical Paper

Demonstration of a Novel, Off Road, Diesel Combustion Concept

2016-04-05
2016-01-0728
There are numerous off-road diesel engine applications. In some applications there is more focus on metrics such as initial cost, packaging and transient response and less emphasis on fuel economy. In this paper a combustion concept is presented that may be well suited to these applications. The novel combustion concept operates in two distinct operation modes: lean operation at light engine loads and stoichiometric operation at intermediate and high engine loads. One advantage to the two mode approach is the ability to simplify the aftertreatment and reduce cost. The simplified aftertreatment system utilizes a non-catalyzed diesel particulate filter (DPF) and a relatively small lean NOx trap (LNT). Under stoichiometric operation the LNT has the ability to act as a three way catalyst (TWC) for excellent control of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx).
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

Effects of Various Model Parameters in the Simulation of a Diesel SCR System

2012-04-16
2012-01-1297
A Selective Catalytic Reduction (SCR) system is a simple solution to mitigate high concentration of nitrogen oxides from tail pipe emissions using ammonia as catalyst. In recent years, implementation of stringent emission standards for diesel exhaust made the SCR system even more lucrative aftertreatment solution for diesel engine manufacturer due to its well established reaction mechanism and lower initial cost involved compared to other available options. Nitrogen oxides reduction efficiency and ammonia slip are two main parameters that affects SCR system performance. Therefore, primary design objective of an efficient SCR system is to enhance reduction of nitrogen oxides and control ammonia slip. Both these factors can be improved by having a uniform mixture of ammonia at the SCR inlet. In this mathematical simulation, various parameters that affect accuracy in predicting the uniformity of mixture at the SCR inlet have been documented.
X