Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Combustion Chamber Development for Flat Firedeck Heavy-Duty Natural Gas Engines

2024-04-09
2024-01-2115
The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine.
Technical Paper

Advanced 1-D Ignition and Flame Growth Modeling for Ignition and Misfire Predictions in Spark Ignition Engines

2021-04-06
2021-01-0376
Simulating high amounts of exhaust gas recirculation in spark ignited engines to predict combustion using the currently available CFD modeling approaches is a challenge and does not always give reasonable matches with experimental observations. One of the reasons for the mismatch lies with the secondary circuit treatment of the ignition coil and the resulting energy deposition or a complete lack of it thereof. An ignition modeling approach is developed in this work which predicts the energy transfer from the electrical circuit to the gases in the combustion chamber leading to flame kernel growth under high EGR and high gas flow velocity conditions. Secondary circuit sub-model includes secondary side of the coil, spark plug and spark gap. The sub-model calculates the delivered energy to the gas based on given circuit properties and total initial electrical energy.
Technical Paper

Combustion Stabilization for Enriched D-EGR Applications via Air-Assisted Pre-Chambers

2021-04-06
2021-01-0481
The dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on several spark-ignited engines at both low and high-load conditions. Syngas (H2+CO) is produced by the dedicated cylinder (D-cyl) which operates at a rich air-fuel ratio. The syngas helps to stabilize combustion under highly dilute conditions at low loads as well as mitigating knock at high loads. The D-cyl produces all the EGR for the engine at a fixed rate of approximately 25% EGR for a four-cylinder engine and 33% EGR for a six-cylinder engine. The D-cyl typically runs up to an equivalence ratio of 1.4 for gasoline-fueled engines, beyond which the combustion becomes unstable due to the decreasing laminar burning velocity caused by rich conditions. Conventional active-fueled and passive pre-chambers have benefits of inducing multi-site ignition and enhancing turbulence in the main chamber.
Journal Article

Extend Syngas Yield through Increasing Rich Limit by Stratified Air Injection in a Single Cylinder Engine

2020-04-14
2020-01-0958
Dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on many spark-ignited engines at both low and high load conditions. The syngas (H2+CO) produced in the dedicated cylinder (D-cyl) by rich combustion helps to stabilize combustion at highly dilute conditions at low loads and mitigate knock at high loads. The dedicated cylinder with 25% EGR can typically run up to equivalence ratio of 1.4, beyond which the combustion becomes unstable. By injecting fresh air near the spark plug gap at globally rich conditions, a locally lean or near-stoichiometric mixture can be achieved, thus facilitating the ignitability of the mixture and increasing combustion stability. With more stable combustion a richer global mixture can be introduced into the D-cyl to generate higher concentrations of syngas. This in turn can further improve the engine thermal efficiency.
Technical Paper

Efficiency and Emissions Characteristics of Partially Premixed Dual-Fuel Combustion by Co-Direct Injection of NG and Diesel Fuel (DI2) - Part 2

2017-03-28
2017-01-0766
The CO2 advantage coupled with the low NOX and PM potential of natural gas (NG) makes it well-suited for meeting future greenhouse gas (GHG) and NOX regulations for on-road medium and heavy-duty engines. However, because NG is mostly methane, reduced combustion efficiency associated with traditional NG fueling strategies can result in significant levels of methane emissions which offset the CO2 advantage due to reduced efficiency and the high global warming potential of methane. To address this issue, the unique co-direct injection capability of the Westport HPDI fuel system was leveraged to obtain a partially-premixed fuel charge by injecting NG during the compression stroke followed by diesel injection for ignition timing control. This combustion strategy, referred to as DI2, was found to improve thermal and combustion efficiencies over fumigated dual-fuel combustion modes.
Journal Article

A Study Isolating the Effect of Bore-to-Stroke Ratio on Gasoline Engine Combustion Chamber Development

2016-10-17
2016-01-2177
A unique single cylinder engine was used to assess engine performance and combustion characteristics at three different strokes, with all other variables held constant. The engine utilized a production four-valve, pentroof cylinder head with an 86mm bore. The stock piston was used, and a variable deck height design allowed three crankshafts with strokes of 86, 98, and 115mm to be tested. The compression ratio was also held constant. The engine was run with a controlled boost-to-backpressure ratio to simulate turbocharged operation, and the valve events were optimized for each operating condition using intake and exhaust cam phasers. EGR rates were swept from zero to twenty percent under low and high speed conditions, at MBT and maximum retard ignition timings. The increased stroke engines demonstrated efficiency gains under all operating conditions, as well as measurably reduced 10-to-90 percent burn durations.
Technical Paper

Laser Ignition in a Pre-Mixed Engine: The Effect of Focal Volume and Energy Density on Stability and the Lean Operating Limit

2005-10-24
2005-01-3752
A series of tests using an open beam laser ignition system in an engine run on pre-mixed, gaseous fuels were performed. The ignition system for the engine was a 1064 nm Nd:YAG laser. A single cylinder research engine was run on pre-mixed iso-butane and propane to determine the lean limit of the engine using laser ignition. In addition, the effect of varying the energy density of the ignition kernel was investigated by changing the focal volume and by varying laser energy. The results indicate that for a fixed focal volume, there is a threshold beyond which increasing the energy density [kJ/m3] yields little or no benefit. In contrast, increasing the energy density by reducing the focal volume size decreases lean performance once the focal volume is reduced past a certain point. The effect of ignition location relative to different surfaces in the engine was also investigated. The results show a slight bias in favor of igniting closer to a surface with low thermal conductivity.
X