Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

V2X Communication Protocols to Enable EV Battery Capacity Measurement: A Review

2024-04-09
2024-01-2168
The US EPA and the California Air Resources Board (CARB) require electric vehicle range to be determined according to the Society of Automotive Engineers (SAE) surface vehicle recommended practice J1634 - Battery Electric Vehicle Energy Consumption and Range Test Procedure. In the 2021 revision of the SAE J1634, the Short Multi-Cycle Test (SMCT) was introduced. The proposed testing protocol eases the chassis dynamometer test burden by performing a 2.1-hour drive cycle on the dynamometer, followed by discharging the remaining battery energy into a battery cycler to determine the Useable Battery Energy (UBE). Opting for a cycler-based discharge is financially advantageous due to the extended operating time required to fully deplete a 70-100kWh battery commonly found in Battery Electric Vehicles (BEVs).
Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

Quantifying the Costs of Charger Availability Uncertainty for Residents of Multi-Unit Dwellings

2024-04-09
2024-01-2034
Even when charging at the highest rates currently available, Electric Vehicles (EVs) add range at substantially lower rates than Internal Combustion Engine Vehicles (ICVs) do while fueling. In addition, DC charging comes at a cost premium and leads to accelerated battery degradation. EV users able to rely on AC charging during long dwells at home or work may experience cost and time savings relative to ICV users with similar driving patterns. However, EV users unable to charge during long dwells will face higher charging costs and higher dedicated charging time. An important question is how occupants of Multi-Unit Dwellings (MUDs), which provide some AC Electric Vehicle Supply Infrastructure (EVSE) but not enough for all cars to charge at once, will be effected. In this paper the authors’ previously published method for quantifying EV user inconvenience due to charging is extended to deal with stochastic charger availability.
Technical Paper

Eco-Routing Algorithm for Energy Savings in Connected Vehicles Using Commercial Navigation Information

2024-04-09
2024-01-2605
Vehicle-to-everything (V2X) communication, primarily designed for communication between vehicles and other entities for safety applications, is now being studied for its potential to improve vehicle energy efficiency. In previous work, a 20% reduction in energy consumption was demonstrated on a 2017 Prius Prime using V2X-enabled algorithms. A subsequent phase of the work is targeting an ambitious 30% reduction in energy consumption compared to a baseline. In this paper, we present the Eco-routing algorithm, which is key to achieving these savings. The algorithm identifies the most energy-efficient route between an Origin-Destination (O-D) pair by leveraging information accessible through commercially available Application Programming Interfaces (APIs). This algorithm is evaluated both virtually and experimentally through simulations and dynamometer tests, respectively, and is shown to reduce vehicle energy consumption by 10-15% compared to the baseline over real-world routes.
Technical Paper

Trucking Forward: Intrusion Detection for SAE J1708/J1587 Networks in Heavy-Duty Vehicles

2024-04-09
2024-01-2805
Automotive researchers and industry experts have extensively documented vulnerabilities arising from unauthorized in-vehicle communication through academic research, industry investigations, sponsored events, and learnings from real-world attacks. While current cybersecurity endeavors in the heavy-duty (HD) vehicle space focus on securing conventional communication technologies such as the controller area network (CAN), there is a notable deficiency in defensive research concerning legacy technologies, particularly those utilized between trucks and trailers. In fact, state-of-the-art attacks on these systems have only come to public attention through official disclosures and public presentations as recently as 2020. To address these risks, this paper introduces a system-wide security concept called Legacy Intrusion Detection System (LIDS) for heavy-duty vehicle applications utilizing the SAE J1708/J1587 protocol stack.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
Technical Paper

Further Advances in Demonstration of a Heavy-Duty Low NOX System for 2027 and Beyond

2024-04-09
2024-01-2129
Multiple areas in the U.S. continue to struggle with achieving National Ambient Air Quality Standards for ozone. These continued issues highlight the need for further reductions in NOX emission standards in multiple industry sectors, with heavy-duty on-highway engines being one of the most important areas to be addressed. Starting in 2014, CARB initiated a series of technical demonstration programs aimed at examining the feasibility of achieving up to a 90% reduction in tailpipe NOX, while at the same time maintaining a path towards GHG reductions that will be required as part of the Heavy-Duty Phase 2 GHG program. These programs culminated in the Stage 3 Low NOX program, which demonstrated low NOX emissions while maintaining GHG emissions at levels comparable to the baseline engine.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Post-Mortem Analysis of DAAAC and Conventionally Aged Aftertreatment Systems

2023-10-31
2023-01-1656
Upcoming regulations from CARB and EPA will require diesel engine manufacturers to validate aftertreatment durability with full useful life aged components. To this end, the Diesel Aftertreatment Accelerated Aging Cycle (DAAAC) protocol was developed to accelerate aftertreatment aging by accounting for hydrothermal aging, sulfur, and oil poisoning deterioration mechanisms. Two aftertreatment systems aged with the DAAAC protocol, one on an engine and the other on a burner system, were directly compared to a reference system that was aged to full useful life using conventional service accumulation. After on-engine emission testing of the fully aged components, DOC and SCR catalyst samples were extracted from the aftertreatment systems to compare the elemental distribution of contaminants between systems. In addition, benchtop reactor testing was conducted to measure differences in catalyst performance.
Technical Paper

Analysis of overcharge tolerance of aged LMO cells with Examples

2023-09-29
2023-32-0108
The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms associated with unwanted side reactions that occur in these batteries. The same reactions occur during overcharge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. As the battery ages the accuracy of state of charge prediction decreases and vulnerability to persistent overcharge increases. Moreover, as the battery ages, its tolerance to such unintended overcharge changes. This tolerance depends on the nature of the history of cycle and calendar aging. A map of this tolerance in the BMS can provide awareness of the factor of safety due to overcharge as battery ages. Signatures of early warning signs of incipient thermal runaway due to overcharge can also be very useful features in a BMS.
Technical Paper

Reducing the Probability of Error in Testing and Simulation

2023-05-08
2023-01-1114
Simulation and testing are often done by different engineers in different departments of a company. This can lead to disconnects and unrealistic predictions, especially if the person doing simulations does not have an experimental background. On the other hand, experimental results can also include errors that result in misleading answers. It is important for the engineer doing either testing or simulation to have a good understanding for what results are plausible and what results might be suspect. This paper will provide examples where error crept into testing or simulation that could have been caught and corrected early if a good feel for “reasonable” results had been in place. The importance of understanding how a software package is analyzing the data will be explained, since settings buried deep within a menu structure can drive misleading results.
Technical Paper

Development of Automated Driveability Rating System

2023-04-11
2023-01-0427
Trained human raters have been used by organizations such as the Coordinating Research Council (CRC) to assess the vehicle driveability performance effect of fuel volatility. CRC conducts workshops to test fuel effects and their impact on vehicle driveability. CRC commissioned Southwest Research Institute (SwRI) to develop a “Trick Car” vehicle that could trigger malfunctions on-demand that mimic driveability events. This vehicle has been used to train novice personnel on the CRC Driveability Procedure E-28-94. While largely effective, even well-trained human raters can be inconsistent with other raters. Further, CRC rater workshop programs used to train and calibrate raters are infrequent, and there are a limited number of available trained raters. The goal of this program was to augment or substitute human raters with an electronic driveability sensing system.
Technical Paper

Performance, Combustion and Emissions Evaluation of Liquid Phase Port-Injected LPG on a Single Cylinder Heavy-Duty Spark Ignited Engine

2023-04-11
2023-01-0245
Liquefied petroleum gas (LPG), like many other alternative fuels, has witnessed increased adoption in the last decade, and its use is projected to rise as stricter emissions regulations continue to be applied. However, much of its use is limited to dual fuel applications, gaseous phase injection, light-duty passenger vehicle applications, or scenarios that require conversion from gasoline engines. Therefore, to address these limitations and discover the most efficient means of harnessing its full potential, more research is required in the development of optimized fuel injection equipment for liquid port and direct injection, along with the implementation of advanced combustion strategies that will improve its thermal efficiency to the levels of conventional fuels.
Technical Paper

Evaluating the Impact of Connected Vehicle Technology on Heavy-Duty Vehicle Emissions

2023-04-11
2023-01-0716
Eco-driving algorithms enabled by Vehicle to Everything (V2X) communications in Connected and Automated Vehicles (CAVs) can improve fuel economy by generating an energy-efficient velocity trajectory for vehicles to follow in real time. Southwest Research Institute (SwRI) demonstrated a 7% reduction in energy consumption for fully loaded class 8 trucks using SwRI’s eco-driving algorithms. However, the impact of these schemes on vehicle emissions is not well understood. This paper details the effort of using data from SwRI’s on-road vehicle tests to measure and evaluate how eco-driving could impact emissions. Two engine and aftertreatment configurations were evaluated: a production system that meets current NOX standards and a system with advanced aftertreatment and engine technologies designed to meet low NOX 2031+ emissions standards.
Technical Paper

Vehicle Diagnostics Adapter Cybersecurity Concerns with Wireless Connectivity

2023-04-11
2023-01-0034
Maintaining and diagnosing vehicle systems often involves a technician connecting a service computer to the vehicle diagnostic port through a vehicle diagnostics adapter (VDA). This creates a connection from the service software to the vehicle network through a protocol adapter. Often, the protocols for the personal computer (PC) hosted diagnostic programs use USB, and the diagnostic port provides access to the controller area network (CAN). However, the PC can also communicate to the VDA via WiFi or Bluetooth. There may be scenarios where these wireless interfaces are not appropriate, such as maintaining military vehicles. As such, a method to defeature the wireless capabilities of a typical vehicle diagnostic adapter is demonstrated without access to the source code or modifying the hardware. The process of understanding the vehicle diagnostic adapter system, its hardware components, the firmware for the main processor and subsystems, and the update mechanism is explored.
Technical Paper

Quantitative Resilience Assessment of GPS, IMU, and LiDAR Sensor Fusion for Vehicle Localization Using Resilience Engineering Theory

2023-04-11
2023-01-0576
Practical applications of recently developed sensor fusion algorithms perform poorly in the real world due to a lack of proper evaluation during development. Existing evaluation metrics do not properly address a wide variety of testing scenarios. This issue can be addressed using proactive performance measurements such as the tools of resilience engineering theory rather than reactive performance measurements such as root mean square error. Resilience engineering is an established discipline for evaluating proactive performance on complex socio-technical systems which has been underutilized for automated vehicle development and evaluation. In this study, we use resilience engineering metrics to assess the performance of a sensor fusion algorithm for vehicle localization. A Kalman Filter is used to fuse GPS, IMU and LiDAR data for vehicle localization in the CARLA simulator.
Technical Paper

Using Ethernet or a Wireless Harness and Named Data Networking in Autonomous Tractor-Trailer Communication

2023-04-11
2023-01-0924
Autonomous truck and trailer configurations face challenges when operating in reverse due to the lack of sensing on the trailer. It is anticipated that sensor packages will be installed on existing trailers to extend autonomous operations while operating in reverse in uncontrolled environments, like a customer's loading dock. Power Line Communication (PLC) between the trailer and the tractor cannot support high bandwidth and low latency communication. This paper explores the impact of using Ethernet or a wireless medium for commercial trailer-tractor communication on the lifecycle and operation of trailer electronic control units (ECUs) from a Systems Engineering perspective to address system requirements, integration, and security. Additionally, content-based and host-based networking approaches for in-vehicle communication, such as Named Data Networking (NDN) and IP-based networking are compared.
Technical Paper

Data Collection for Incident Response for Vehicles with Autonomous Systems

2023-04-11
2023-01-0628
First responders and traffic crash investigators collect and secure evidence necessary to determine the cause of a crash. As vehicles with advanced autonomous features become more common on the road, inevitably they will be involved in such incidents. Thus, traditional data collection requirements may need to be augmented to accommodate autonomous technology and the connectivity associated with autonomous and semi-autonomous driving features. The objective of this paper is to understand the data from a fielded autonomous system and to motivate the development of requirements for autonomous vehicle data collection. The issue of data ownership and access will be discussed. Additional complicating factors, such as cybersecurity concerns combined with a first responder’s legal authority, may pose challenges for traditional data collection.
Technical Paper

A Predictive Model for Spark Stretch and Mixture Ignition in SI Engines

2023-04-11
2023-01-0202
A physics-based spark ignition model was developed and integrated into a commercial CFD code. The model predicted the spark discharge process based on the electrical parameters of the secondary ignition circuit, tracked the spark motion as it was stretched by in-cylinder gas motion, and determined the resulting energy deposition to the gas. In concert with the existing kinetic solver in the CFD code, the resulting ignition and flame propagation processes were simulated. The model results have been validated against both imaging rig experiments of the spark in moving air and against engine experimental data. The model was able to replicate the key features of the spark and to capture the cyclic variability of high-dilution combustion when multiple engine cycles were simulated.
Technical Paper

Evaluation of Indrio’s Ammonia Sensor using a Diesel Fuel Based Burner Platform

2023-04-11
2023-01-0383
This program involved the detailed evaluation of a novel laser-based in-exhaust ammonia sensor using a diesel fuel-based burner platform integrated with an ammonia injection system. Test matrix included both steady-state modes and transient operation of the burner platform. Steady-state performance evaluation included tests that examined impact of exhaust gas temperature, gas velocity and ammonia levels on sensor response. Furthermore, cross sensitivity of the sensor was examined at different levels of NOX and water vapor. Transient tests included simulation of the FTP test cycles at different ammonia and NOX levels. A Fourier transform infrared (FTIR) spectrometer as well as NIST traceable ammonia gas bottles (introduced into the exhaust stream via a calibrated flow controller) served as references for ammonia measurement.
X