Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Evaluation of Cold Start Technologies on a 3L Diesel Engine

2016-04-05
2016-01-0823
Increasingly stringent emissions regulations require that modern diesel aftertreatment systems must warm up and begin controlling emissions shortly after startup. While several new aftertreatment technologies have been introduced that focus on lowering the aftertreatment activation temperature, the engine system still needs to provide thermal energy to the exhaust for cold start. A study was conducted to evaluate several engine technologies that focus on improving the thermal energy that the engine system provides to the aftertreatment system while minimizing the impact on fuel economy and emissions. Studies were conducted on a modern common rail 3L diesel engine with a custom dual loop EGR system. The engine was calibrated for low engine-out NOx using various combustion strategies depending on the speed/load operating condition.
Journal Article

The Effect of EGR on Low-Speed Pre-Ignition in Boosted SI Engines

2011-04-12
2011-01-0339
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines - where the engine displacement is reduced and turbocharging is employed to increase specific power - a new combustion phenomenon, described as Low-Speed Pre-Ignition (LSPI), has been exhibited. LSPI is characterized as a pre-ignition event typically followed by heavy knock, which has the potential to cause degradation of the engine. However, because LSPI events occur only sporadically and in an uncontrolled fashion, it is difficult to identify the causes for this phenomenon and to develop solutions to suppress it. Some countermeasures exist that OEMs can use to avoid LSPI, such as load limiting, but these have drawbacks.
Technical Paper

Development of a Transient-Capable Multi-Cylinder HCCI Engine

2010-04-12
2010-01-1244
Southwest Research Institute, as part of the Clean Diesel IV consortium, built a multi-cylinder HCCI engine that ran in the HCCI combustion mode full-time. The engine was used to develop HCCI fuels, demonstrate the potential operating range of HCCI, and to demonstrate the feasibility of transient control of HCCI. As part of the engine design, a hardware based method of decoupling control of air and EGR was developed and patented [ 1 ]. The system utilized a positive displacement supercharger with a controlled bypass valve for air-flow control, and a high-pressure loop EGR system with variable geometry turbocharger to control the EGR rate. By utilizing the system, the required precision from the air and EGR control in the engine controller was reduced.
Technical Paper

The Effect of Sparkplug Design on Initial Flame Kernel Development and Sparkplug Performance

2006-04-03
2006-01-0224
Tests were conducted on a variety of commercially available spark plugs to determine the influence of igniter design on initial kernel formation and overall performance. Flame kernel formation was investigated using high-speed schlieren visualization. The flame growth rate was quantified using the area of the burned gas region. The results showed that kernel growth rate was heavily influenced by electrode geometry and configuration. The igniters were also tested in a bomb calorimeter to determine the levels of supplied and delivered energy. The typical ratio of supplied to delivered energy was 20% and igniters with a higher internal resistance delivered more energy and had faster kernel formation rates. The exception was plugs with large amounts of conductive mass near the electrodes, which had very slow kernel formation rates despite relatively high delivered energy levels.
Technical Paper

HCCI in a Variable Compression Ratio Engine-Effects of Engine Variables

2004-06-08
2004-01-1971
Homogeneous Charge Compression Ignition (HCCI) experiments were performed in a variable compression ratio single cylinder engine. This is the fourth paper resulting from work performed at Southwest Research Institute in this HCCI engine. The experimental variables, in addition to speed and load, included compression ratio, EGR level, intake manifold pressure and temperature, fuel introduction location, and fuel composition. Mixture preparation and start of reaction control were identified as fundamental problems that required non-traditional mixture preparation and control strategies. The effects of the independent variable on the start of reaction have been documented. For fuels that display significant pre-flame reactions, the start of the pre-flame reactions is controlled primarily by the selection of the fuel and the temperature history of the fuel air mixture.
X