Refine Your Search

Search Results

Viewing 1 to 3 of 3
Video

Overview of Southwest Research Institute Activities in Engine Technology R&D

2012-05-10
This presentation will cover an overview of challenges and key discussion points for advanced electric motor and drive testing . Voiko will visit some examples of how D&V approaches these issues and also some suggestions for how the industry can view these intriguing problems as opportunities. The presentation will also delve into current testing developments that involve resolver, load bank and power measurement devices by highlighting solutions in the market today. There will also be a cursory look into the future of electric motor testing and what we can expect in the near term. Presenter Voiko Loukanov, D&V Electronics Limited
Technical Paper

Virtual Cylinder Pressure Sensor (VCPS) with Individual Variable-Oriented Independent Estimators

2005-04-11
2005-01-0059
Tremendous amount of useful information can be extracted from the cylinder pressure signal for engine combustion control. However, the physical cylinder pressure sensors are undesirably expensive and their health need to be monitored for fault diagnostic purpose as well. This paper presents the results of the development of a virtual cylinder pressure sensor (VCPS) with individual variable-oriented independent estimators. Two neural network-based independent cylinder pressure related variable estimators were developed and verified at steady state. The results show that these models can predict the variables correctly compared with the extracted variables from the measured physical cylinder pressure sensor signal. Good generalization capabilities of the developed models are observed in the sense that the models work well not only for the training data set but also for the new inputs that they have never been exposed to before.
Technical Paper

Further Experiments on the Effects of In-Cylinder Wall Wetting on HC Emissions from Direct Injection Gasoline Engines

1999-10-25
1999-01-3661
A recently developed in-cylinder fuel injection probe was used to deposit a small amount of liquid fuel on various surfaces within the combustion chamber of a 4-valve engine that was operating predominately on liquefied petroleum gas (LPG). A fast flame ionization detector (FFID) was used to examine the engine-out emissions of unburned and partially-burned hydrocarbons (HCs). Injector shut-off was used to examine the rate of liquid fuel evaporation. The purpose of these experiments was to provide insights into the HC formation mechanism due to in-cylinder wall wetting. The variables investigated were the effects of engine operating conditions, coolant temperature, in-cylinder wetting location, and the amount of liquid wall wetting. The results of the steady state tests show that in-cylinder wall wetting is an important source of HC emissions both at idle and at a part load, cruise-type condition. The effects of wetting location present the same trend for idle and part load conditions.
X