Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Ethanol Flex-fuel Engine Improvements with Exhaust Gas Recirculation and Hydrogen Enrichment

2009-04-20
2009-01-0140
An investigation was performed to identify the benefits of cooled exhaust gas recirculation (EGR) when applied to a potential ethanol flexible fuelled vehicle (eFFV) engine. The fuels investigated in this study represented the range a flex-fuel engine may be exposed to in the United States; from 85% ethanol/gasoline blend (E85) to regular gasoline. The test engine was a 2.0-L in-line 4 cylinder that was turbocharged and port fuel injected (PFI). Ethanol blended fuels, including E85, have a higher octane rating and produce lower exhaust temperatures compared to gasoline. EGR has also been shown to decrease engine knock tendency and decrease exhaust temperatures. A natural progression was to take advantage of the superior combustion characteristics of E85 (i.e. increase compression ratio), and then employ EGR to maintain performance with gasoline. When EGR alone could not provide the necessary knock margin, hydrogen (H2) was added to simulate an onboard fuel reformer.
Journal Article

Synergies between High EGR Operation and GDI Systems

2008-04-14
2008-01-0134
A gasoline direct injection engine was operated at elevated EGR levels over a significant portion of the performance map. The engine was modified to use both cooled and un-cooled EGR in high pressure loop and low pressure loop configurations. The addition of EGR at low and part load was shown to decrease NO and CO emissions and to reduce fuel consumption by up to 4%, primarily through the reduction in pumping losses. At high loads, the addition of EGR resulted in higher fuel consumption benefits of 10-20% as well as the expected NO and CO reductions. The fuel economy benefit at high loads resulted from a decrease in knock tendency and a subsequent improvement in combustion phasing as well as reductions in exhaust temperatures that eliminated the requirement for over-fuelling.
Technical Paper

Development of a New Light Stratified-Charge DISI Combustion System for a Family of Engines With Upfront CFD Coupling With Thermal and Optical Engine Experiments

2004-03-08
2004-01-0545
A new Light Stratified-Charge Direct Injection (LSC DI) spark ignition combustion system concept was developed at Ford. One of the new features of the LSC DI concept is to use a ‘light’ stratified-charge operation window ranging from the idle operation to low speed and low load. A dual independent variable cam timing (DiVCT) mechanism is used to increase the internal dilution for emissions control and to improve engine thermal efficiency. The LSC DI concept allows a large relaxation in the requirement for the lean after-treatment system, but still enables significant fuel economy gains over the PFI base design, delivering high technology value to the customer. In addition, the reduced stratified-charge window permits a simple, shallow piston bowl design that not only benefits engine wide-open throttle performance, but also reduces design compromises due to compression ratio, DiVCT range and piston bowl shape constraints.
X