Refine Your Search

Topic

Author

Search Results

Technical Paper

Cooperative Connected and Automated Mobility in a Roundabout

2024-04-09
2024-01-2002
Roundabouts are intersections at which automated cars seem currently not performing sufficiently well. Actually, sometimes, they get stuck and the traffic flow is seriously reduced. To overcome this problem a V2N-N2V (vehicle-to-network-network-to-vehicle) communication scheme is proposed. Cars communicate via 5G with an edge computer. A cooperative machine-learning algorithm orchestrates the traffic. Automated cars are instructed to accelerate or decelerate with the triple aim of improving the traffic flow into the roundabout, keeping safety constraints, and providing comfort for passengers on board of automated vehicles. In the roundabout, both automated cars and human-driven cars run. The roundabout scenario has been simulated by SUMO. Additionally, the scenario has been reconstructed into a dynamic driving simulator, with a real human driver in a virtual reality environment. The aim was to check the human perception of traffic flow, driving safety and driving comfort.
Technical Paper

Analytical and Experimental Handling Performance of Ultra-Efficient Lightweight Vehicles

2023-08-28
2023-24-0135
The rising environmental awareness has led to a growing interest in electric and lightweight vehicles. Four-wheeled Ultra-Efficient Lightweight Vehicles (UELVs) have the potential to improve the quality of urban life, reduce environmental impact and make efficient use of land. However, the safety of these vehicles in terms of dynamic behaviour needs to be better understood. This paper aims to provide a quantitative assessment of the handling behaviour of UELVs. An analytical single-track model and a numerical simulation by VI-CarRealTime are analysed to evaluate the dynamic performance of a UELV compared to a city car. This analysis shows that the lightweight vehicle has a higher readiness (i.e. lower reaction time to yaw rate) for step steering and lower steering effort (i.e. higher steady-state value). Experimental analysis through real-time driving sessions on the Dynamic Driving Simulator assesses vehicle responses and subjective perception for different manoeuvres.
Technical Paper

Multi-Physics Simulations of Ice Shedding from Wind Turbines

2023-06-15
2023-01-1479
Wind turbines in cold climates are likely to suffer from icing events, deteriorating the aerodynamic performances of the blades and decreasing their power output. Continuous ice accretion causes an increase in the ice mass and, consequently, in the centrifugal force to which the ice shape is subjected. This can result in the shedding of chunks of ice, which can jeopardize the aeroelastic properties of the blade and, most importantly, the safety of the surrounding people and of the wind turbine structure itself. In this work, ice shedding analysis is performed on a quasi-3D, multi-step ice geometry accreted on the NREL 5MW reference wind turbine. A preliminary investigation is performed by including the presence of an ice protection system to decrease the adhesion surface of the ice on the blade. A reference test case with a simple geometry is used as verification for the correct implementation of the procedure.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Technical Paper

Prediction of Driving Cycles by Means of a Co-Simulation Framework for the Evaluation of IC Engine Tailpipe Emissions

2020-06-30
2020-37-0011
The reliable prediction of pollutant emissions generated by IC engine powertrains during the WLTP driving cycle is a key aspect to test and optimize different configurations, in order to respect the stringent emission limits. This work describes the application of an integrated modeling tool in a co-simulation environment, coupling a 1D fluid dynamic code for engine simulation with a specific numerical code for aftertreatment modelling by means of a robust numerical approach, to achieve a complete methodology for detailed simulations of driving cycles. The main goal is to allow an accurate 1D simulation of the unsteady flows along the intake and exhaust systems and to apply advanced thermodynamic combustion models for the calculation of cylinder-out emissions.
Journal Article

A 1D/Quasi-3D Coupled Model for the Simulation of I.C. Engines: Development and Application of an Automatic Cell-Network Generator

2017-03-28
2017-01-0514
Nowadays quasi-3D approaches are included in many commercial and research 1D numerical codes, in order to increase their simulation accuracy in presence of complex shape 3D volumes, e.g. plenums and silencers. In particular, these are regarded as valuable approaches for application during the design phase of an engine, for their capability of predicting non-planar waves motion and, on the other hand, for their low requirements in terms of computational runtime. However, the generation of a high-quality quasi-3D computational grid is not always straightforward, especially in case of complex elements, and can be a time-consuming operation, making the quasi-3D tool a less attractive option. In this work, a quasi-3D module has been implemented on the basis of the open-source CFD code OpenFOAM and coupled with the 1D code GASDYN.
Journal Article

Adjoint-Driven Aerodynamic Shape Optimization Based on a Combination of Steady State and Transient Flow Solutions

2016-04-05
2016-01-1599
Aerodynamic vehicle design improvements require flow simulation driven iterative shape changes. The 3-D flow field simulations (CFD analysis) are not explicitly descriptive in providing the direction for aerodynamic shape changes (reducing drag force or increasing the down-force). In recent times, aerodynamic shape optimization using the adjoint method has been gaining more attention in the automotive industry. The traditional DOE (Design of Experiment) optimization method based on the shape parameters requires a large number of CFD flow simulations for obtaining design sensitivities of these shape parameters. The large number of CFD flow simulations can be significantly reduced if the adjoint method is applied. The main purpose of the present study is to demonstrate and validate the adjoint method for vehicle aerodynamic shape improvements.
Technical Paper

Application of CAEBAT Full Field Approach for a Liquid-Cooled Automotive Battery Pack

2016-04-05
2016-01-1217
The Computer-Aided Engineering of Automotive Batteries (CAEBAT) Phase 1 project is a U.S. Department of Energy-funded, multi-year project which is aimed at developing a complete CAE tool set for the automotive battery pack design. This paper reports the application of the full field approach of the CAEBAT which is developed by the General Motors-led industry team, for a 24-cell liquid-cooled prototype battery pack. It also summarizes the verification of the approach by comparing the simulation results with the measurement data. The simulation results using the Full Field Approach are found to have a very good agreement with the measurement data.
Technical Paper

Fixed-Point Model Development Assistant Tool

2016-04-05
2016-01-0018
Development of the software using fixed-point arithmetic is known to be tedious and error-prone. Difficulty of selecting the correct data type can outwear software developers. The common retreats often sought after include manual calculation of the approximate ranges, exhaustive simulations with extreme input values and conservative development approach by using excessive word length. The first two retreats - manual calculation and exhaustive simulations - increase the software development time, and the third retreat - conservative development - leads to the excessive memory (RAM and ROM) utilization by the software. The model-based development environment such as the Simulink has graphical nature to the software with flow of data defined by connecting signal lines. The model-based software therefore gives an opportunity to trace signal flow in the software. Input-tracing method is presented to trace the flow of the input signals of the user selected block in the software model.
Technical Paper

A Hardware-in-the-Loop (HIL) Bench Test of a GT-Power Fast Running Model for Rapid Control Prototyping (RCP) Verification

2016-04-05
2016-01-0549
A GT-Power Fast Run Model simplified from detail model for HIL is verified with a bench test using the dSPACE Simulator. Firstly, the conversion process from a detailed model to FRM model is briefly described. Then, the spark timing, fuel pulse with control for FAR, and torque level control are developed for proof of concept. Moreover a series of FRM/Simulink co-simulation and HIL tests are conducted. In the summary, the test results are presented and compared with GT detailed model simulations. The test results show that the FRM/dSPACE HIL stays consistent in most variables of interest under 0.7-0.9 real-time factor condition between 1000 - 5000 RPM. The same steady-state can be reached by RCP controllers or with GT-Power internal controllers. The transient states are close using different control algorithm. The main purpose of HIL application is achieved, despite inconsistencies in performance data like fuel consumption.
Journal Article

An Algorithm for Identification of Locally Optimal Basins in Large Dimensions on a Multi-Model Response Surface

2015-04-14
2015-01-0480
Response Surface Models are often used as a surrogate for expensive black-box functions during optimization to reduce computational cost. Often, the CAE analysis models are highly nonlinear and multi-modal. A response surface approximation of such analysis as a result is highly multi-modal; i.e. it contains multiple local optima. A gradient-based optimizer working with such a response surface will often converge to the nearest local optimum. There does not exist any method to guarantee a global optima for non-convex multi-modal functions. For such problems, we propose an efficient algorithm to find as many distinct local optima as possible. The proposed method is specifically designed to work in large dimensions (about 100 ∼ 1000 design variables and similar number of constraints) and can identify most of the locally optimal solutions in a reasonable amount of time.
Journal Article

Simulation Fidelity Improvement of H350 Lower Tibia Indices

2015-04-14
2015-01-0578
Finite element dummy models have been more and more widely applied in virtual development of occupant protection systems across the automotive industry due to their predictive capabilities. H350 dyna dummy model [1] is a finite element representation of the Hybrid III male dummy [2], which is designed to represent the average of the United States adult male population. Lower extremity injuries continue to occur in front crash accidents despite increasing improvement of vehicle crashworthiness and occupant restraint system. It is therefore desirable to predict lower tibia injury numbers in front occupant simulations. Though lower tibia loading/index predictions are not studied as much as the FMVSS 208 regulated injury numbers, the tibia indices are injury criteria that need to be assessed during IIHS and Euro NCAP frontal offset occupant simulations. However during front crash simulations, it is very difficult to achieve good correlations or predictions of lower tibia loadings.
Technical Paper

Normally-Engaged Dual-Piston Clutch for Engine Stop-Start Application

2015-04-14
2015-01-1141
For the conventional 6 speed automatic transmission with engine stop-start powertrain, an electrically-driven auxiliary pump is implemented to maintain the transmission line pressure as required to lock-up the CB1234 clutch during engine auto-stop conditions. Upon releasing the brake pedal, the transmission engages into first gear with the objective to accelerate the vehicle in a responsive manner. In this study, a novel normally-engaged dual-piston clutch concept is designed to keep the CB1234 clutch locked-up during engine auto-stop conditions with the intention to eliminate the auxiliary pump without compromising vehicle performance. This dual piston clutch concept requires a relatively low line pressure to release the normally-engaged clutch when needed, thus, minimizing the hydraulic pumping work. To explore the functionality of this concept under a wide-open-throttle (WOT) auto-start transition, modeling and simulation of the normally-engaged dual-piston clutch is completed.
Technical Paper

Safety Belt Testing Apparatus

2015-04-14
2015-01-1485
A new apparatus for testing modern safety belt systems was developed. The apparatus design, dynamic behavior and test procedure are described. A number of tests have been conducted using this apparatus. These tests allowed identification of key performance parameters of pretensioners and load limiting retractors which are relevant to occupant protection in a crash environment. Good test repeatability was observed, which allowed comparison of different safety belt designs. The apparatus may be used for better specification and verification of safety belt properties on a subsystem level as well as for the validation of CAE models of safety belts used in simulations of occupant response to crash events.
Technical Paper

Development of a Small Rear Facing Child Restraint System Virtual Surrogate to Evaluate CRS-to-Vehicle Interaction and Fitment

2015-04-14
2015-01-1457
Automotive interior design optimization must balance the design of the vehicle seat and occupant space for safety, comfort and aesthetics with the accommodation of add-on restraint products such as child restraint systems (CRS). It is important to understand the range of CRS dimensions so that this balance can be successfully negotiated. CRS design is constantly changing. In particular, the introduction of side impact protection for CRS as well as emphasis on ease of CRS installation has likely changed key design points of many child restraints. This ever-changing target creates a challenge for vehicle manufacturers to assure their vehicle seats and occupant spaces are compatible with the range of CRS on the market. To date, there is no accepted method for quantifying the geometry of child seats such that new designs can be catalogued in a simple, straightforward way.
Technical Paper

Park Pawl Dynamic System Engagement Speed Calculation Using Isight

2015-04-14
2015-01-1363
For a CAE model of the park pawl dynamic system, the engagement speed calculation is done by controlling the input rotational velocity of the vehicle. Usually, it requires multiple adjustment of the input rotational velocity to get the engagement speed and that demands time, effort and file management skill of an analyst. The current objective of this paper is to demonstrate how software Isight, working with ABAQUS Explicit as the solver, can be used to automate the engagement speed calculation procedure and thus reduce the time and effort required of a CAE analyst. The automated system is developed in a way such that the accuracy of the results can be controlled by the end user. It is observed that the automated system significantly saves an analyst's effort. The system design can be optimized easily for modifiable design features such as the torsional spring and the actuator spring stiffness values using the proposed procedure.
Journal Article

Methodology for Sizing and Validating Life of Brake Pads Analytically

2014-09-28
2014-01-2495
An area of brake system design that has remained continually resistant to objective, computer model based predictive design and has instead continued to rely on empirical methods and prior history, is that of sizing the brake pads to insure satisfactory service life of the friction material. Despite advances in CAE tools and methods, the ever-intensifying pressures of shortened vehicle development cycles, and the loss of prototype vehicle properties, there is still considerable effort devoted to vehicle-level testing on public roads using “customer-based” driving cycles to validate brake pad service life. Furthermore, there does not appear to be a firm, objective means of designing the required pad volume into the calipers early on - there is still much reliance on prior experience.
Technical Paper

Integrated CAE Methods for Perceived Quality Assurance of Vehicle Outer Panels

2014-04-01
2014-01-0366
Oil canning and initial stiffness of the automotive roofs and panels are considered to be sensitive customer ‘perceived quality’ issues. In an effort to develop more accurate objective requirements, respective simulation methods are continuously being developed throughout automotive industries. This paper discusses a latest development on oil canning predictions using LS-DYNA® Implicit, including BNDOUT request, MORTAR contact option and with the stamping process involved, which resulted in excellent correlations especially when it comes to measurements at immediate locations to the feature lines of the vehicle outer panels. Furthermore, in pursuit of light-weighting vehicles with thinner roofs, a new CAE method was recently developed to simulate severe noise conditions exhibited on some of developmental properties while going through a car wash.
Technical Paper

HIL Driveline Dyno

2014-04-01
2014-01-1738
Today's sophisticated state-of-the-art powertrains with various intelligent control units (xCU) need to be calibrated and tested stand-alone as well as in interaction. Today the majority of this work is still carried out with prototype vehicles on test tracks. Moving prototype vehicle tests from the road into the lab is key in achieving shorter development times and saving development cost. This kind of frontloading requires a modular and powerful simulation of all vehicle components, test track, and driver in steady state and dynamic operation. The described HIL (Hardware In the Loop) high performance driveline dyno test bed uses driveline components and models from the engine all the way to the wheel ends. The test cell was built to do real time vehicle maneuvers and NVH testing. This test setup can emulate any road surface and grade and vehicle inertia including wheels and engine as close to reality as possible.
Journal Article

Development of an ESP Control Logic Based on Force Measurements Provided by Smart Tires

2013-04-08
2013-01-0416
The present paper investigates possible enhancement of ESP performance associated with the use of smart tires. In particular a novel control logic based on a direct feedback on the longitudinal forces developed by the four tires is considered. The control logic was developed using a simulation tool including a 14 dofs vehicle model and a smart tires emulator. Performance of the control strategy was evaluated in a series of handling maneuvers. The same maneuvers were performed on a HiL test bench interfacing the same vehicle model with a production ESP ECU. Results of the two logics were analyzed and compared.
X