Refine Your Search

Topic

Author

Search Results

Technical Paper

The Influence of Torsional Vibrations on the Longevity of Manual Transmission Synchronizers and the Durability of Clutch Dampers

2024-01-25
2024-01-5010
This study delves into the impact of engine torsional vibration on transmission component failures, specifically synchronizers and clutch damper springs. Synchronizers are crucial in ensuring smooth gear shifts by synchronizing the rotational speeds of the transmission input and output shafts. While design factors such as geometry, friction material, and lubrication are often attributed to synchronizer failures, engine-generated torsional vibrations significantly affect their lifespan. Clutch damper mechanisms integrated into the clutch disc are designed to mitigate these vibrations. This research employs 1D powertrain simulation modeling to predict powertrain torsional vibration behavior. Additionally, rig tests are conducted to simulate vehicle-level angular accelerations and examine the impact of torsional vibrations on synchronizer life.
Technical Paper

A Comparative Study of Vehicle Handling Characteristics of Commercial Vehicle with Innovative Nonlinear Stiffness Mono-Leaf Suspension & Parabolic Spring Suspension through Simulation

2024-01-16
2024-26-0057
In recent years due to significant increased cost of raw material, fuel and energy, vehicle cost is increased. As vehicle cost is one of the major factors that attracts prospective buyers, it has created specific demand for low weight and low-cost components than traditional components with better performance to meet customer expectations. Suspension is one of the critical aggregates where lot of material is used and reduction in weight tends to give lot of cost benefit. As suspension system derives vehicle’s handling performance, it has to be ensured that handling performance of vehicle is maintained the same or made better while reducing weight of the suspension. Advancements in simulation capabilities coupled with manufacturing technology has enabled development non-traditional leaf springs. One of such springs is mono-leaf spring without shackle. This type of leaf spring provides advantages such as low weight and nonlinear stiffness.
Technical Paper

Automotive Crankshaft Development in Austempered Ductile Iron Casting

2023-05-25
2023-28-1302
The automotive industry is facing a challenge as efficiency improvements are required to address the strict emission norms which in turn requires high performance downsized, lightweight IC engines. The increasing demand for lightweight engine needs high strength to weight ratio materials. To meet high strength to weight ratio, castings are preferable. However due to strength limitations for critical crankshaft applications, it forces to use costly forgings such as micro alloyed forging steel and Martensitic (after heat treatment) forging steel. To reduce the cost impact, high strength Austempered Ductile iron (ADI) casting is developed for crankshaft applications to substitute steel forgings. Austempered Ductile Iron is having an excellent mechanical properties due to aus-ferritic structure. The improved properties of developed ADI Crankshaft over steel forged crankshaft offers additional weight advantage.
Technical Paper

Characterization of TiN Precipitates and It’s Morphology in Spring Steel for Commercial Vehicle Leaf Spring Suspension

2023-05-25
2023-28-1317
Leaf springs are used for vehicle suspension to support the load. These springs are made of flat sections of spring steel in single or in stack of multiple layers, held together in bracketed assembly. The key characteristics of leaf spring are defined as ability to distribute stresses along its length and transmit a load over the width of the chassis structures. The most common leaf spring steels are carbon steels alloyed with Cr and micro-alloyed with Ti, V and Nb. The specific thermomechanical process and alloying elements result in specific strength and fatigue properties for spring steels. The unique properties which facilitate use of spring steel in leaf spring suspensions are ability to withstand considerable twisting or bending forces without any distortion. The microstructure of these steel determines the performance and reflects the process of steel manufacturing. The performance is mainly determined by evaluating fatigue life durability.
Technical Paper

Use of Powder Metallurgy Based Connecting Rod for Diesel Engine Application

2023-05-25
2023-28-1352
The usage of forging a preformed, near net shape, compacted and sintered metal powder has been widely accepted since the eighties and is now one of the mainstays for producing Connecting rods in North America. However, its use in Indian subcontinent is limited as its counterpart i.e. conventional steel forging is still the most dominant. Powder metallurgy route has many advantages like good dimensional accuracy; minimum scattering of weight etc. Despite these advantages, the Powder metallurgy process is still not preferred predominantly due to technical (endurance) and infrastructural limitations. This work envisages combining the benefits of powder metallurgy process with the required mechanical properties viz. tensile and fatigue strength alongside design modifications to meet the requirements of a connecting rod for a 2-cylinder diesel engine. The connecting rods met the fatigue life at the required FOS equaling the performance of a conventionally forged connecting rod.
Technical Paper

Design and Development of a Novel Air-Cycle Refrigeration System for Passenger Vehicles

2022-11-09
2022-28-0447
Current Air Conditioning (AC) system uses hydrofluorocarbons (HFC) as refrigerant to transfer heat from cabin and cool the passengers. However, most refrigerants used today have severe environmental effects due to high global warming potential leading to global warming effects. Montreal Protocol and Kigali amendment calls for all nations to reduce refrigerant usage and transport sector being one of the main consumer of refrigerant, regulations regarding refrigerant usage and emission are becoming more stringent day by day. In this paper, a novel air-cycle refrigeration system has been designed and also tested for passenger vehicle applications. Automobile industry in developed countries has pivoted to R1234yf refrigerant for the most part, and has also rolled out R744 refrigerant for mass production to limited extent, which are in much lower Global warming potential (GWP) range than R134a.
Technical Paper

Design of Hybrid Air Conditioning System Using Phase Change Material for Commercial Sleeper Vehicles

2022-11-09
2022-28-0448
Unfavorable climates, fatigue, safety & deprived sleep of driver’s leads to use of AC system for their quick thermal comfort during night with engine ON. This scenario is very critical from a human’s safety & vehicle functionality point of view. This also consumes an additional 10-15% of fuel requirements in AC running conditions. So, to address the social problems of driver’s sleep and pollution-free environment by reducing the use of fossil fuels, there is a need for alternative techniques for air cooling which work during engine OFF condition. Various alternative options for air cooling have been reviewed. Accordingly, the packaging flexibility of phase change material (PCM) technology makes it easy to implement, yet effective usage of large quantity stored PCM, needs optimization. This paper proposes a design of a hybrid air conditioning system for sleeper commercial vehicles using a combined conventional compression and phase change material.
Technical Paper

Effect of Normalizing Heat Treatment on Material and Mechanical Properties of High Strength Steel Tube for Lift axle of Commercial Vehicles

2022-10-05
2022-28-0351
Lift axles of heavy commercial vehicles are deployed to handle increased payload. These axles of Commercial vehicles are made of low alloy carbon steel materials. Lift axles are designed in hollow condition for weight reduction opportunity. Two types of tube materials are used for the manufacturing of lift axles. These are either Cold Drawn Seamless (CDS) tubes or Hot Finished Seamless (HFS) tube material. The vanadium micro-alloyed steel grade, 20MnV6 is an excellent choice for the manufacturing of lift axles. The 20MnV6 has favorable mechanical properties for lift axles and also offers good weldability. However, lift axles made of 20MnV6 when manufactured in hot-finished condition, shows significant scatter in terms of durability performance. This requires further heat treatment of 20MnV6 to be deployed for reducing the scatter in the material properties to reduce scatter in durability performance and thus increasing the reliability of the lift axles.
Technical Paper

Digital Simulation of Welding Process to Optimize Residual Stresses and Microstructure of Welded Suspension Component

2022-10-05
2022-28-0380
Automotive suspension system forms the basis for the design of vehicle with durability, reliability and NVH requirements. The automotive suspension systems are exposed to dynamic and static loads which in turn demands the highest integrity and performance against fatigue based metallic degradation. The growing demand for light-weighting has culminated into numerous designs of rear twist beam suspension systems. However these designs drive their design flexibility by incorporating multiple welding joints into the suspension system. Welding joints helps in designing complex automotive systems. However, these welding joints bring in weak points as welding process itself degrades parent material and introduces areas with high tensile residual stresses. These areas with tensile residual stresses are susceptible to undergo fatigue failure. Thus, there is a need to improve welding process to mitigate harmful tensile residual stresses.
Technical Paper

Methodology to Optimize Radiator Fan Induced Steering Wheel Vibration of a Car

2022-10-05
2022-28-0108
Electric radiator fan is a vital component within IC and EV passenger vehicle cooling system. However, due to its operation, it induces noise and in-cab vibration affecting human comfort level. This paper primarily focus on FMS (Fan Motor Shroud) assembly induced steering wheel vibrations in a vehicle under idle + AC ON condition. The entire NVH performance was cascaded from vehicle level to component level to evaluate for high steering wheel vibration and its transfer path analysis. Unit level vibrations study was also carried out using a rigid rig under controlled conditions. Based on FMS vibration analysis, it was observed that fan blade rotating imbalance leads the high vibrations within system. Thus, a balancing method with higher precision and accuracy was used to measure and balance the fan under all operating conditions. Sensitivity analysis had been carried out for fan imbalanced boundary conditions and operating speeds.
Technical Paper

Evaluation of Ferritic Stainless Steel Performance in Exhaust Environment

2022-10-05
2022-28-0344
In current scenario, there is trend to use stainless steels in place of carbon steels and aluminized carbon steels for Exhaust application. In response to changing regulatory requirements and durability performance requirements of exhaust systems, the ferritic stainless steels are proven to be best suited for the purpose. There are multiple ferritic stainless steels available as options for exhaust system. The material in an exhaust system is subject to heat, oxidation, corrosion and condensate. These environment condition demands that exhaust material should possess high temperature corrosion and oxidation resistance along with required mechanical performance such as vibration and thermo-mechanical load cycles. This work is an attempt to develop simulated test methods for corrosion and thermal environment and evaluate performance of commonly used ferritic stainless steels.
Journal Article

Characterization of Automotive Seat NVH Performance

2022-10-05
2022-28-0106
Global automotive market is noticing an increase in competition from every corner of automobile world since decades and automotive OEMs are on the front line with this competition. Thus, the need of time for OEMs is to develop and maintain the brand image within the market until the launch of new models. Disparate factors within a car distinctly interlinks the customer perception towards a brand image. However, NVH as a factor equally affects the customer decision while choosing a particular brand as it is easily perceivable by any layman customer. NVH fraternity focuses on vibration induced within tactile locations, (i.e. seat, steering wheel, gear knob and floor) in a car. Among all these, Steering wheel and Seat plays a prominent role as it interdigitate directly towards customer comfort. In this detailed study we have focused on Seat as aggregate providing comfort to customer.
Technical Paper

Design and Development of Lightweight Pivot Arm Using Austempered Ductile Iron (ADI) for Heavy Commercial Vehicles

2021-09-22
2021-26-0255
In a current competitive automotive market, weight and cost optimization is the need of an hour. Therefore it is important to explore use of alternative material which has less weight, low manufacturing cost and better strength. This paper presents methodology to achieve cost & weight reduction through use of Austempered Ductile Iron (ADI) instead of alloy forging. ADI casting has lower density, physical properties at par with alloy forgings and lower manufacturing cost. Pivot arm is the one of the critical component of twin axle steering system which transfers the hydraulic torque from steering gearbox to second forward axle via linkage system. In order to design lightweight pivot arm, existing chromium alloy steel material is replaced with the Austempered ductile iron (ADI). Pivot arm is designed and validated digitally as well as bench test and results are found to be meeting cost and weight targets.
Technical Paper

Machine Learning based Operation Strategy for EV Vacuum Pump

2021-09-22
2021-26-0139
In an automotive braking system, Vacuum pump is used to generate vacuum in the vacuum servo or brake booster in order to enhance the safety and comfort to the driver. The vacuum pump operation in the braking system varies from conventional to electric vehicles. The vacuum pump is connected to the alternator shaft or CAM shaft in a conventional vehicle, operates continuously at engine speed and supplies continuous vacuum to the brake servo irrespective of vacuum requirement. To sustain continuous operation, these vacuum pumps are generally oil cooled. Whereas in electric vehicles, the use of a motor-driven vacuum pump is very much needed for vacuum generation as there is no engine present. Thus, with the assistance of an electronic control unit (ECU), the vacuum pump can be operated only when needed saving a significant amount of energy contributing to fuel economy and range improvement and emission reduction.
Technical Paper

Methodology to Assess Headlamp Performance in Virtual Environment and its Correlation with Real World Driving Conditions

2021-09-22
2021-26-0130
Automotive exterior lighting systems has to meet several regulatory requirements & manufacture specific internal standards to achieve desired performance. These test specifications are usually generic in nature and formulated mainly to validate the standalone product under standard laboratory conditions. Most of the time these specifications are common for entire vehicle portfolio. The rationale of these standards is to define the basic illuminance in the safe braking distance. Thus, however, using the requirements in these standards to evaluate the performance of front lighting systems is only qualitative. Research on working out method for quantitative evaluation of front lighting system is necessary [1] In practice, however, the luminance levels at road surfaces are usually very dynamic; depend largely on the variations in vehicle parameters, ambient weather conditions, road surface uniformities and effects of light intensity & color contrasts on target visibility.
Technical Paper

A Model Based Approach to DPF Soot Estimation and Validation for BSVI Commercial Vehicles in Context to Indian Driving Cycles

2021-09-22
2021-26-0183
With India achieving the BSVI milestone, the diesel particulate filter (DPF) has become an imperative component of a modern diesel engine. A DPF system is a device designed to trap soot from exhaust gas of the diesel engine and demands periodic regeneration events to oxidize the accumulated soot particles. The regeneration event is triggered either based on the soot mass limit of the filter or the delta pressure across it. For a Heavy Duty Diesel Engine (HDDE), pressure difference across the DPF is not usually reliable as the size of the DPF is large enough compared to the DPF used ina passenger vehicle diesel engine. Also, the pressure difference across DPF is a function of exhaust mass flow and thus it makes it difficult to make an accurate call for active regeneration. This demands for a very accurate soot estimation model and it plays a vital role in a successful regeneration event.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Sensitivity of LCA Bush Stiffness in Judder while Braking for Twist Blade Type Suspension in Passenger Cars

2021-09-22
2021-26-0513
This paper deals with specific NVH related issues attributed due to LCA bush stiffness and Brake rotor DTV. While the focus is on the cause of such vibration (judder while braking at 120 kmph), the presentation goes to the root-cause of judder and how various suspension/tire/brake components contribute to the generation/amplification of such vibration. Results are presented for twist blade types of vehicle suspensions, along with procedures that were developed specifically for this study and some of the actual case study. DTV-Disk thickness variation
Technical Paper

Development of a Rapid Vehicle Steering Cooling System Using Thermoelectrics

2021-09-22
2021-26-0517
Nowadays automotive cabin comfort has become a necessity rather than an optional feature, with customers demanding more comfort features. Thermal comfort becomes an essential part of this expectation. Since steering wheel is the first surface that the driver will touch once he enters the vehicle, maintaining thermal comfort of steering wheel becomes important, especially in tropical countries like India where a car parked in hot weather can get significantly warm inside. In this work, two design concepts for automotive steering wheel thermal control based on thermoelectric effect are depicted along with a detailed mathematical model. Thermoelectric coolers were selected for this purpose as it is solid state, compact & scalable solution to achieve rapid cooling rates. This was the desired feature expected from an integration standpoint in automotive architecture.
Technical Paper

Influence of Asymmetrical Design Parameter on Vehicle Pull During Brake Application

2021-09-22
2021-26-0354
The steering system of commercial vehicle is asymmetrical to left side and rightside, this causes vehicle pull during braking application. This directly affects the safety of the driver and vehicle ride & handling performance. In a similar way, the asymmetrical suspension parameter unintentionally set during vehicle assembly arealso major contributors for creating a vehicle pull. After application of brake force, the tire contact patch creates a moment about the kingpin axis. However, this moment generated is different on left and right-side due to asymmetrical design parameters resulting in vehicle deviation from its intended path. A large deviation may lead to on road accidents. Some of the major factors which are responsible for the vehicle pulling phenomenon are the asymmetrical steering system compliance, asymmetrical suspension geometry, tire, braking system, road camber etc.
X