Refine Your Search

Topic

Author

Search Results

Technical Paper

Automotive Crankshaft Development in Austempered Ductile Iron Casting

2023-05-25
2023-28-1302
The automotive industry is facing a challenge as efficiency improvements are required to address the strict emission norms which in turn requires high performance downsized, lightweight IC engines. The increasing demand for lightweight engine needs high strength to weight ratio materials. To meet high strength to weight ratio, castings are preferable. However due to strength limitations for critical crankshaft applications, it forces to use costly forgings such as micro alloyed forging steel and Martensitic (after heat treatment) forging steel. To reduce the cost impact, high strength Austempered Ductile iron (ADI) casting is developed for crankshaft applications to substitute steel forgings. Austempered Ductile Iron is having an excellent mechanical properties due to aus-ferritic structure. The improved properties of developed ADI Crankshaft over steel forged crankshaft offers additional weight advantage.
Technical Paper

Characterization of TiN Precipitates and It’s Morphology in Spring Steel for Commercial Vehicle Leaf Spring Suspension

2023-05-25
2023-28-1317
Leaf springs are used for vehicle suspension to support the load. These springs are made of flat sections of spring steel in single or in stack of multiple layers, held together in bracketed assembly. The key characteristics of leaf spring are defined as ability to distribute stresses along its length and transmit a load over the width of the chassis structures. The most common leaf spring steels are carbon steels alloyed with Cr and micro-alloyed with Ti, V and Nb. The specific thermomechanical process and alloying elements result in specific strength and fatigue properties for spring steels. The unique properties which facilitate use of spring steel in leaf spring suspensions are ability to withstand considerable twisting or bending forces without any distortion. The microstructure of these steel determines the performance and reflects the process of steel manufacturing. The performance is mainly determined by evaluating fatigue life durability.
Technical Paper

Comparative Analysis of Different Corrosion Test Cycles

2023-05-25
2023-28-1325
Corrosion in automotive industry is broadly categorized into cosmetic & perforation corrosion. Cosmetic corrosion comprises of superficial red rust which is deleterious to the overall aesthetic appeal of the vehicle but can be rectified. Perforation corrosion involves complete erosion of the panel, compromising structural integrity of the respective part. Perforation corrosion demands part replacement. In order to tackle this menace, automotive OEMs have formulated varied corrosion strategies in terms of selection of appropriate substrate, part design & surface protection scheme. Validation of various corrosion strategies become pivotal during the development phase of various parts and assemblies. Traditionally, Salt Spray Test (SST) has been used to determine corrosion life of materials/parts/assemblies. This test however does not simulate real-world conditions.
Technical Paper

Dissimilar Resistance Spot Welding of Steel and Aluminium Alloy Using Ni Interlayer for Automobile Structure

2023-05-25
2023-28-1355
A lightweight multi-material combination of steel and aluminium alloy (Al) is becoming a novel approach towards environmentally sustainable transport systems. Studies show that 10% reduction of vehicle weight results into 3-7% reduction in specific fuel consumption in IC engines and a 13.7% improvement in electric range for electric vehicles. However, dissimilar welding of Al/steel is a key challenge because of incompatible thermo-physical properties (melting point, thermal conductivity, and coefficient of thermal expansion) and low miscibility between Al and steel. The formation of brittle and hard Al-steel intermetallic compound (IMC) at the joint interface is the major concern for dissimilar welding of Al/steel. In this work, efforts are made to check the feasibility of Ni interlayer to control IMC formation at the interface of Al/steel dissimilar welded joint. Resistance spot welding is used to join low carbon steel CR01 and Al AA6061-T6 with pure Ni interlayer.
Technical Paper

Use of Powder Metallurgy Based Connecting Rod for Diesel Engine Application

2023-05-25
2023-28-1352
The usage of forging a preformed, near net shape, compacted and sintered metal powder has been widely accepted since the eighties and is now one of the mainstays for producing Connecting rods in North America. However, its use in Indian subcontinent is limited as its counterpart i.e. conventional steel forging is still the most dominant. Powder metallurgy route has many advantages like good dimensional accuracy; minimum scattering of weight etc. Despite these advantages, the Powder metallurgy process is still not preferred predominantly due to technical (endurance) and infrastructural limitations. This work envisages combining the benefits of powder metallurgy process with the required mechanical properties viz. tensile and fatigue strength alongside design modifications to meet the requirements of a connecting rod for a 2-cylinder diesel engine. The connecting rods met the fatigue life at the required FOS equaling the performance of a conventionally forged connecting rod.
Technical Paper

Effect of Normalizing Heat Treatment on Material and Mechanical Properties of High Strength Steel Tube for Lift axle of Commercial Vehicles

2022-10-05
2022-28-0351
Lift axles of heavy commercial vehicles are deployed to handle increased payload. These axles of Commercial vehicles are made of low alloy carbon steel materials. Lift axles are designed in hollow condition for weight reduction opportunity. Two types of tube materials are used for the manufacturing of lift axles. These are either Cold Drawn Seamless (CDS) tubes or Hot Finished Seamless (HFS) tube material. The vanadium micro-alloyed steel grade, 20MnV6 is an excellent choice for the manufacturing of lift axles. The 20MnV6 has favorable mechanical properties for lift axles and also offers good weldability. However, lift axles made of 20MnV6 when manufactured in hot-finished condition, shows significant scatter in terms of durability performance. This requires further heat treatment of 20MnV6 to be deployed for reducing the scatter in the material properties to reduce scatter in durability performance and thus increasing the reliability of the lift axles.
Technical Paper

Hole Expansion Characteristics of Advanced High Strength Steel (AHSS) Grades and Their Effects on Manufacturability in Automotive Industry

2022-10-05
2022-28-0350
Currently, automotive industries are using Advanced High-Strength Steels (AHSS) sheet grades to achieve key requirements like light weighting and improved crash performance. But forming of AHSS grades becomes key challenge due to its lesser ductility and edge fracturing tendency during forming. In general, most of the automotive components undergoes shearing operations like blanking and punching which affects the edge ductility of the steel. AHSS grades possess limited edge ductility compared with conventional steel grades which results in edge fracturing due to tensile strain during stretch flanging operation. Stretch flange-ability is an important formability characteristic, which aids in material selection to avoid edge fracturing of complex shaped parts. Material with better stretch flange-ability possess better edge ductility and hence perform better in stretch flanging of sheet metal.
Technical Paper

Evaluation of Ferritic Stainless Steel Performance in Exhaust Environment

2022-10-05
2022-28-0344
In current scenario, there is trend to use stainless steels in place of carbon steels and aluminized carbon steels for Exhaust application. In response to changing regulatory requirements and durability performance requirements of exhaust systems, the ferritic stainless steels are proven to be best suited for the purpose. There are multiple ferritic stainless steels available as options for exhaust system. The material in an exhaust system is subject to heat, oxidation, corrosion and condensate. These environment condition demands that exhaust material should possess high temperature corrosion and oxidation resistance along with required mechanical performance such as vibration and thermo-mechanical load cycles. This work is an attempt to develop simulated test methods for corrosion and thermal environment and evaluate performance of commonly used ferritic stainless steels.
Technical Paper

Design and Development of Lightweight Pivot Arm Using Austempered Ductile Iron (ADI) for Heavy Commercial Vehicles

2021-09-22
2021-26-0255
In a current competitive automotive market, weight and cost optimization is the need of an hour. Therefore it is important to explore use of alternative material which has less weight, low manufacturing cost and better strength. This paper presents methodology to achieve cost & weight reduction through use of Austempered Ductile Iron (ADI) instead of alloy forging. ADI casting has lower density, physical properties at par with alloy forgings and lower manufacturing cost. Pivot arm is the one of the critical component of twin axle steering system which transfers the hydraulic torque from steering gearbox to second forward axle via linkage system. In order to design lightweight pivot arm, existing chromium alloy steel material is replaced with the Austempered ductile iron (ADI). Pivot arm is designed and validated digitally as well as bench test and results are found to be meeting cost and weight targets.
Technical Paper

Methodology to Assess Headlamp Performance in Virtual Environment and its Correlation with Real World Driving Conditions

2021-09-22
2021-26-0130
Automotive exterior lighting systems has to meet several regulatory requirements & manufacture specific internal standards to achieve desired performance. These test specifications are usually generic in nature and formulated mainly to validate the standalone product under standard laboratory conditions. Most of the time these specifications are common for entire vehicle portfolio. The rationale of these standards is to define the basic illuminance in the safe braking distance. Thus, however, using the requirements in these standards to evaluate the performance of front lighting systems is only qualitative. Research on working out method for quantitative evaluation of front lighting system is necessary [1] In practice, however, the luminance levels at road surfaces are usually very dynamic; depend largely on the variations in vehicle parameters, ambient weather conditions, road surface uniformities and effects of light intensity & color contrasts on target visibility.
Technical Paper

A Model Based Approach to DPF Soot Estimation and Validation for BSVI Commercial Vehicles in Context to Indian Driving Cycles

2021-09-22
2021-26-0183
With India achieving the BSVI milestone, the diesel particulate filter (DPF) has become an imperative component of a modern diesel engine. A DPF system is a device designed to trap soot from exhaust gas of the diesel engine and demands periodic regeneration events to oxidize the accumulated soot particles. The regeneration event is triggered either based on the soot mass limit of the filter or the delta pressure across it. For a Heavy Duty Diesel Engine (HDDE), pressure difference across the DPF is not usually reliable as the size of the DPF is large enough compared to the DPF used ina passenger vehicle diesel engine. Also, the pressure difference across DPF is a function of exhaust mass flow and thus it makes it difficult to make an accurate call for active regeneration. This demands for a very accurate soot estimation model and it plays a vital role in a successful regeneration event.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Technical Paper

Assessment of Passenger Car for Surface Dirt Contamination in Wind Tunnel

2021-09-22
2021-26-0385
Self-soiling or surface contamination is usual phenomenon observed during rainy season wherein dirt on road are picked by rotating wheel and later released in air as fine particles. These released dirt particles are further carried by airflow around vehicle and as a result stick on vehicle exterior surfaces leading to surface contamination. Surface dirt contamination is one of critical issues that need consideration during early phase of vehicle development as vehicle styling plays a critical role for airflow around vehicle and therefore settling of dirt on vehicle exterior surfaces. Non consideration of such aspects in design can lead to safety issues with likely non-functioning of parking sensors, camera and visibility issues through ORVM, tailgate glass etc. Hence it is important to understand physical as well as digital techniques for assessment of vehicle for surface dirt contamination.
Technical Paper

A Closed System Simulation based Methodology to Accomplish Advance Engine Calibrations towards CAFE

2021-09-22
2021-26-0352
The automotive engineering fraternity is facing tremendous challenges to improve fuel economy and emissions of the internal combustion engine. The stringent CAFÉ standards for CO2 emissions are expected to become further demanding as time progresses. Indian OEM engineering experts have been considering various technology options to improve vehicle fuel economy. However, the time and costs associated with the development of these strategies and technologies remains a point of major concern and challenge. The potential of a technology to reduce fuel consumption can be estimated in three basic ways. One approach involves developing an actual prototype engine and vehicle with the technologies under evaluation, performing the actual measurements. Some variability from test to test is although expected, this method is the most accurate but time consuming and very expensive.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Technical Paper

Simulink Model for SoC Estimation using Extended Kalman Filter

2021-09-22
2021-26-0382
State of Charge (SoC) estimation of battery plays a key role in strategizing the power distribution across the vehicle in Battery Management System. In this paper, a model for SoC estimation using Extended Kalman Filter (EKF) is developed in Simulink. This model uses a 2nd order Resistance-Capacitance (2RC) Equivalent Circuit Model (ECM) of Lithium Ferrous Phosphate (LFP) cell to simulate the cell behaviour. This cell model was developed using the Simscape library in Simulink. The parameter identification experiments were performed on a new and a used LFP cell respectively, to identify two sets of parameters of ECM. The cell model parameters were identified for the range of 0% to 100% SoC at a constant temperature and it was observed that they vary as a function of SoC. Hence, variable resistance and capacitance blocks are used in the cell model so that the cell parameters can vary as a function of SoC.
Technical Paper

Methodology to Derive RLD Based Durability Test Schedule for Gearbox Oil Seals

2021-09-22
2021-26-0461
Oil seal leakage is one of the major failure mode in gearbox / transaxle. Oil seal failures can be due to various reasons like high temperature, insufficient lubrication, failure due to external environment, incorrect fitment etc. Major reason for oil seal failure is insufficient oil flow inside gearbox when vehicle is running on gradient for long duration. When vehicle is running in hilly region, transmission will get incline leading to oil deficiency at one half of the transmission. Oil seal in this location will not get sufficient lubrication and will run dry. Also, there will be rise in local temperature at seal lip to shaft interface leading to failure of oil seal lip. Subsequently, oil leakage from transmission will start from this location when vehicle is running in different terrain. Due to continuous seepage, oil quantity in the transmission will get reduced and may lead to gear failure or seizure of bearing.
Technical Paper

Development and Analysis of Equivalent Circuit Models and Effect of Battery Parameter Variations on State of Charge Estimation Algorithm

2021-09-22
2021-26-0153
Lithium-Ion batteries are popular for use in Electric vehicle (EV) applications. To improve and understand the use of Lithium-Ion batteries (LIBs) in EV application, present study focused and utilized equivalent circuit models (ECMs). Model parameters are identified using pulse charge and discharge test carried on 20Ah Lithium Iron Phosphate cell. Curve-fitting technique is utilized and detailed procedure to extract model parameters is presented. Models are validated with experimental data of pulse discharge test. Accuracy obtained using 1-RC, 2-RC, 3-RC circuit models is verified and high accuracy of 3RC circuit model can make it act as a battery emulator. Extended Kalman Filter (EKF) is utilized for estimation of State of Charge (SOC) of Lithium Iron Phosphate cell. As per our observation, a good accuracy with low computational burden can be achieved with 1RC model parameters.
X