Refine Your Search

Topic

Author

Search Results

Technical Paper

Dynamic Spark Advance Technology for Gasoline Fuel Blends

2024-01-16
2024-26-0074
Fuel efficiency is one of the most important customer requirement in Indian market as well as very crucial to meet the upcoming regulation like CAFÉ for Indian Automotive manufacturers. Most of the technology changes to meet this challenge, always come with a cost penalty with hardware addition. To counter the above challenge, a strategy has been identified in the EMS software that will dynamically adapt the spark timing based on fuel octane rating. This strategy has resulted in fuel efficiency improvement on Modified Indian Drive Cycle on chassis dynamometer test and as well as on real life road tests using fuels with various octane number.
Technical Paper

Geometry, Sizing and Optimization of Honeycomb Structures along with Embedded Metal Inserts on the Floor for Truck-Mounted Container Applications

2024-01-16
2024-26-0186
With the rise of worldwide trends towards light weighting and the move towards electric vehicles, it is now more important than ever for the automotive industry to develop and implement lightweight materials that will result in significant weight reduction and product improvements. A great deal of research has been done on how to best combine and configure honeycomb cores with the right face sheets for Truck-Mounted Container Applications. Honeycomb structures possess the ability to bring about superior structural rigidity when the core parameters are selected and optimized based on the automotive application requirements.
Technical Paper

A Detailed Study to Evaluate Sporty Sound Character of Passenger Cars

2024-01-16
2024-26-0207
Sound signature design is gaining more importance within global auto manufacturers. ‘Sportiness’ is one of the important point to consider while designing a sound character of a car for passionate drivers and those who love aggressive driving. Nowadays automobile manufacturers are more focused in developing a typical sound signature for their cars as a ‘unique design strategy’ to attract a niche segment of the market and to define their brand image. Exhaust system is one of the major aggregate determining the sound character of ICE vehicles which in turn has the direct influence on the customer perception of the vehicle and the Brand image and also the human comfort both inside and outside the cabin. This research work focuses on novel approaches to identify frequency range and order content by a detailed study of subjective feelings based on psycho-acoustics. Sound samples of various benchmark sporty vehicles have been studied and analyzed based on sound quality parameters.
Technical Paper

Enhanced Development Process for UPDs – Digital Approach

2024-01-16
2024-26-0239
Underrun Protection devices (UPDs) are specially designed barriers fitted to the front, side, or rear of heavy trucks. In case of accidents, these devices prevent small vehicles such as bikes and passenger cars going underneath and thus minimizing the severity of such accident. Design and strength of UPD is such that it absorbs the impact energy and offers impact resistance to avoid the vehicle under run. Compliance to UPD safety regulations provides stringent requirements in terms of device design, dimensions, and its behavior under impact loading. Since accuracy of Computer Aided Engineering (CAE) predictions have improved, numerical tools like Finite element method (FEM) are extensively used for design, development, optimization, and performance verification with respect to target regulatory performance requirements. For improved accuracy of performance prediction through FEA, correct FE representation of sub-systems is very important.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

One Dimensional (1-D) Simulation Model for Ride and Comfort Evaluation of a Two Axle Truck

2024-01-16
2024-26-0299
In automotive industry, testing and validation teams are highly dependent on availability of prototype vehicles for testing and evaluation of ride & comfort behavior of vehicles. Special test tracks surfaces are also used (namely Tar road, Express way and driving over a Cleat) to evaluate the ride & comfort through subjective evaluation. Ride is largely affected by transmissibility of road excitations to the driver and other occupant’s seats, influence of suspension, bushes and tire are the major contributors in the transfer path of vibrations. A configurable 1–D simulation model of a Two Axle Truck is developed for quick evaluation of the ride & comfort behavior which is need of the hour for the testing team in optimizing the number of iterations in physical testing. These simulations will help in understanding the ride & comfort behavior and its sensitivity to changes in the component’s characteristics in absence of physical test vehicles.
Technical Paper

Digital Approach for Design of Modular, Scalable Futuristic Instrument Panel for Commercial Vehicle

2024-01-16
2024-26-0387
Road infrastructure in India is being upgraded at a rapid pace. Quality of life of people has also improved significantly in the last decade. Such trends have significantly impacted design of commercial vehicles and vehicular systems in the country. This paper deals with the design and development of a modern futuristic instrument panel for trucks. Methodology to arrive at product features and solutions which retain their novelty and appeal for a longer term has also been illustrated. Regulatory scenario, modularity, HMI, Perceived Quality, Driver Comforts, evolving technologies, trends and materials are some of the considerations which have discussed in detail. International benchmarks and customer requirement have been analyzed for setting Performance targets. A digital approach for evaluating these considerations evolved during the design and development process has been elaborated in detail.
Technical Paper

Test Bench Phase Shift-ICE to EV

2024-01-16
2024-26-0368
Since last decade automotive Industry is witnessing transition from ICE to EV due to stringent environmental laws by government bodies and technological breakthrough. EV technology is emerging day by day. Biggest challenge in front of OEM is the phase shift from ICE to EV. OEM need to decide on glide path for test rig development for this change to support ICE & EV powertrain validation to deliver reliable product to their customers. In EV development, major focus is on investment for battery development. Hence, for the Motor and Gearbox validation balanced approach is to upgrade existing ICE test bench for the EV with minimum effort and cost. This paper provides details on need and approach required to make the ICE test bench capable for EV powertrain validation. Proposed methodology helps to support both type of powertrain and have maximum utilization of the test bench.
Technical Paper

Tweaking Elastomer by Addition of Nano Silica in Formulation

2024-01-16
2024-26-0197
The art of rubber formulation science always has a scope for fine-tuning with changing the parameters like base polymer grade selection, filler selection, curing system/cross link density, manufacturing methods, and many. Hence forth the filler manufacturer arrived differentiation of the filler already, this paper provides a description of rubber formulation tuning for damped vibration automotive applications. Acicular spiky spherical and hollow spherical nano silica selected as filler. With the thorough knowledge of elastomeric formulation and with doping different new selected silica grades, an optimized DOE was done. New formulation development was focused on isolation characteristics without affecting other necessary properties. The different inputs for finite element calculations was studied with the effects of doping different fillers and also studied the resultant virtual output in damping coefficients.
Technical Paper

Powertrain Mounting System NVH Simulation Methodology Using Transfer Path Analysis Technique for Electric Vehicles

2024-01-16
2024-26-0225
In comparison to traditional gasoline-powered vehicles, Electric vehicles (EVs) development and adoption is driven by several factors such as zero emissions, higher performance, cost effective in maintenance, smoother and quieter ride. Global OEMs are competing to provide a reduced in-cab noise for ensuring a smooth and quiet driving experience. Short project timelines for EV demands quick design and development. In initial stages of project, input data availability of EV is limited and a simplified approach is necessary to accelerate the development of vehicle. This paper focuses on simulation methodology for predicting structure borne noise from powertrain deploying Transfer Path Analysis approach. Current simulation methodology involves full vehicle model with multiple flexible bodies and full BIW flexible model which leads to complex modelling and longer simulation times.
Technical Paper

Lubrication Evaluation of EV Transmission

2024-01-16
2024-26-0328
Advent of EV powertrain has considerable effect on transmission development activities as competed to regular ICE transmission. Conventional ICE transmission and the transmission for an e-powertrain differ on fundamental level. The conventional transmission has number of gear ratios, shift mechanism which enables the transmission to deliver a smooth power output as per demand from the driver. Whereas the e-powertrain transmission is mostly a single gear ratio transmission (reducer) which primarily depends on speed and torque variation from the motor to cater the driver requirement. Hence, the operating speeds of such e-transmissions can vary from 0 to 20000 rpm in both forward and reverse directions. Such a large speed variation as compared with conventional transmission calls for special attention towards the lubrication of internal components. High speeds and lower oil viscosities tend to disrupt the oil films in between contact surfaces causing metal to metal contact.
Technical Paper

Optimization of Drum Brake System in HCVs Using Two-Way Coupled CFD Approach

2023-11-05
2023-01-1874
The brake systems are given top priority by automotive OEMs in the development of medium and heavy commercial trucks and buses, which can carry increased loads. When trucks and buses are travelling at high speeds or crossing downhill, during braking operations, the friction faces (brake drum and liner) experience a significant rise in temperature due to the conversion of kinetic energy into heat energy within seconds. This lowers the friction coefficient at the interface, resulting in distortions, thermal cracks, hub grease burning, and overheating. Drum brake system designs must be improved and optimized to dissipate more heat from the brake drum assembly and prevent brake failure. Nowadays advance transient numerical simulations assist in the design, development and optimization of the brake system to visualize 3D flow physics and temperature variations throughout the brake duty cycles. In the current study, different Cases of drum brakes to improve cooling efficiency are evaluated.
Technical Paper

Numerical Approach to Welding Process and its Integration in Assessment of Fatigue life of Component

2021-09-22
2021-26-0357
Welding is one of the most convenient and extensively used manufacturing process across every industry and is recognized as a cost effective joining technique. The root cause of most of the fabricated structural failures lies in the uncertainties associated with the welding process. It is prone to generate high residual stresses due to non-volumetric changes during heating and cooling cycle. These residual stresses have a significant impact on fatigue life of component leading to poor quality joints. To alleviate these effects, designers and process engineers rely upon their experience and thumb rules but has its own limitations. This approach often leads to conservative designs and pre-mature failures. Recent advances in computational simulation techniques provide us opportunity to explore the complex phenomenon and generate deep insights. The paper demonstrates the methodology to evaluate the residual stresses due to welding in virtual environment.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Technical Paper

Model-Based System Engineering Approach for Steering Feel Simulation for Passenger Vehicles

2021-09-22
2021-26-0400
The basic function of steering system is to control the direction of the vehicle. The driver applies effort on the steering wheel and receives feedback through the steering system as a result of tire to road interaction. This feedback consists of a haptic (force) feedback which is directly felt by the driver and it is termed as steering feel. Precise steering feel gives better driving experience and is decisive factor for customer to buy a vehicle as well as for OEMs in building brand image. Along with steering parameters, suspension and tire parameters also has significant impact on steering feel. In past, modelling of the steering system was done at component level or with simplified vehicle system. Such approaches had not given accurate results of steering feel metric and resulted in incorrect steering design parameter selection. In order to replicate actual vehicle characteristics, complex and detailed modelling of steering, tire and suspension subsystems is necessary.
Technical Paper

Customized and Market Specific Thermal Robust Clutch System Solution

2021-09-21
2021-01-1239
The goal of reducing fuel consumption and CO2-Emission is leading to turbo-charged combustion engines that deliver high torque at low speeds (down speeding). To meet NVH requirements damper technologies such as DMF (Dual Mass Flywheel) are established, leading to reduced space for the clutch system. Specific measures need to be considered if switching over from SMF (Single Mass Flywheel) to DMF [8]. Doing so has an impact on thermal behavior of the clutch system, for example due to reduced and different distribution of thermal masses and heat transfer to the surroundings. Taking these trends into account, clutch systems within vehicle powertrains are facing challenges to meet requirements e.g. clutch life, cost targets and space limitation. The clutch development process must also ensure delivery of a clutch system that meets requirements taking boundary conditions such as load cycles and driver behavior into account.
Technical Paper

Enhancing Productivity in Design by Front Loading and Simultaneous Engineering Using CAD Morphing

2020-04-14
2020-01-0496
Automotive OEMs are launching multiple products with ever reducing development time, balancing costs, quality and time to market, with clear focus on performance and weight. Platform architecture concepts, modular designs for differentiation etc. are strategies adopted by automotive OEMs towards shorter development cycles. Thus, concept generation phase of the digital product development process is expected to enable generation and evaluation of multiple concept architectures, carry out performance studies and largely focus on optimization, upfront. This Front loading of engineering and call for simultaneous engineering requires support in terms of quick and good CAD modeling with maturity. This paper proposes a process that focuses on generation and evaluation of multiple concepts, besides enabling optimization of concept before the detailed design phase kicks in.
Technical Paper

Optimizing Steering Column Layout and UJ Phase Angle to Enhance Vehicle Dynamics Performance

2019-02-05
2019-01-5010
Vehicle dynamics is one of the most important vehicle attributes. It is classified into three domains, the longitudinal, vertical, and lateral dynamics. This paper focuses on optimizing the lateral vehicle dynamics which is driven by the straight ahead controllability and cornering controllability of the vehicle. One of the important parameters that dictates these sub-attributes is the steering ratio. Therefore, designing the right steering ratio is critical to meet the vehicle “specific” targets. Significant amount of work has been done by many researchers on variable steering ratio by implementing variable gear ratio (VGR) rack, active steering, and steer-by-wire systems. This paper discusses the methodology and considerations to optimize the steering ratio for a constant gear ratio rack by optimizing the steering column layout, viz., orientation and the phase angle in universal joints.
Technical Paper

Development of Accelerated Life Test Schedule for Rig Testing of Live Axles Based on Road Load Data and Its Correlation with Field

2018-04-03
2018-01-0099
Drive components of live axle undergoes different loading conditions during field usage depending upon terrain conditions, vehicle loading and traffic conditions etc. During vehicle running, drive components of axle experiences variable torque levels, which results in the fatigue damage of the components. Testing of these drive components of axle on test rig for endurance life is an imperative part of axle development, owing to limitations of vehicle testing because of time and cost involved. Similarly, correlating field failures with rig testing is equally critical. In such situation, if a test cycle is derived correlating the field usage, rig testing can be effectively used for accelerated life testing and reliability prediction of these components. An approach is presented in the paper wherein test cycle is derived based on the data collected on vehicle in the field under service road and loading conditions.
Technical Paper

Optimization of Air Intake System and Exhaust System for Better Performance of Turbocharged Gasoline Engine

2018-04-03
2018-01-1424
Gasoline engines with Multi point fuel injection (MPFI) technology are being developed with naturally aspirated and/or turbocharged engines. Wherein a MPFI and turbo charged combination engines have certain challenges during development stages. One of the important challenge is design of air intake and exhaust system. With MPFI turbocharged engine combination, the under bonnet heat management is crucial task for drivability. The heat management of air intake plays a vital role in drivability part therefore a design layout of air intake path is an important aspect. Drivability can be categorized as low end, mid-range and top end drivability. Turbocharged MPFI engines have a typical phenomenon of ‘Lag in response’ in the low-end region. This ‘Lag in response’ phenomenon at low-end drivability region can be overcome through optimization of air intake system and optimization of exhaust back pressure.
X