Refine Your Search

Topic

Author

Search Results

Technical Paper

Automated Charging Methodology for Fleet Operated EV Buses to Reduce Down Time and Increase Safety at Charging Station

2024-01-16
2024-26-0112
Prime concern for electric vehicle where the application of the vehicle is public transport, is the charging of vehicle and operation of its infrastructure. Such an example of operating the EV buses is under the GCC (gross cost contract) model, with high operation time and comparatively lesser time for charging. It is challenging to meet these requirements. To counter this situation in fleet operated busses it is proposed to adapt an automated charging method which involves minimum man power intervention and automated mechanism to connect & disconnect the charging connectors. This paper proposes an automated pantograph mechanism based method of charging EV buses, meeting requirements as per SAE J3105 & ISO 15118 standards, which would be an ideal way to resolve the current situation.
Technical Paper

Anti- Rollback Function for Electric Vehicles without HSA/ABS System

2024-01-16
2024-26-0096
In high-end commercial vehicles, technologies like Electronic Braking Systems (EBS) help pull away the vehicle from a standstill on steep gradients with no risk of rolling back. Tata Motors has developed an indigenous Anti-Roll Back (ARB) system that effectively minimizes this risk but without the use of EBS/HSA. The ARB delivers identical functionality to the HSA feature in the EBS but autonomously, and by purely electric means. In the proposed system, the electric traction motor develops a high positive torque when the vehicle tries to roll back upon minimal accelerator pedal press. The system is autonomous in the sense that the driver does not need to press any HSA switch on the dashboard and the system works on relatively flatter road also which otherwise is not the case with HSA as it negatively affects the operation on flatter road by locking wheels and vehicle launches with a very high torque when brakes are automatically released by EBS upon threshold torque build-up.
Technical Paper

A Study on Traction Battery Mounting Arrangements in Different EV Buses

2024-01-16
2024-26-0121
Adaption of EV powertrains in existing vehicle architecture has created many unique challenges in meeting performance, reliability, safety, ease of manufacturing & serviceability at optimum cost. Mounting of large size battery packs in existing vehicle architecture is one of them. Specific energy & the energy density of Lithium ion batteries are very lower compared to Diesel & Petrol, which requires high volume & weight for equivalent energy storage. For movement of many passengers and to ensure sufficient range EV buses typically needs large amount of energy and for storage of same bigger size battery packs are required. These large size batteries directly affect vehicle architecture, seating layout, ease of assembly & serviceability. Moreover the heavy mass of batteries directly influences vehicle dynamics & performance characteristics such as vehicle handling, roll & NVH. The most important consideration in design of EV vehicles in general and buses in specific is safety.
Technical Paper

A Comparative Analysis and Novel Powertrain Topology for FCEVs, Integrating Ultra-Capacitor and Batteries

2024-01-16
2024-26-0168
This paper addresses challenges in current Fuel Cell Stack Buses and presents a novel Fuel Cell Electric Vehicle Bus (FCEV-Bus) powertrain that combines fuel cells, ultra-capacitors, and batteries to enhance performance and reliability. Existing Fuel Cell Stack Buses struggle with responsiveness, power fluctuations, and cost-efficiency. The FCEV-Bus powertrain uses a Fuel Cell stack as the primary power source, ultra-capacitors for quick power response, and batteries for addressing power variations. Batteries also save costs in certain cases. This combination optimizes power management, improves system efficiency, and extends the FCEV-Bus's operational life. In conclusion, this paper offers an innovative solution to overcome traditional fuel cell system limitations, making FCEV-Buses more efficient and reliable for potential wider adoption.
Technical Paper

Development of Advanced Signal Analysis Technique for Pass-by Noise Source Identification of Light Commercial Vehicle

2024-01-16
2024-26-0201
The auto industry is one of the major contributors for noise pollution in urban areas. Specifically, highly populated heavy commercial diesel vehicle such as buses, trucks are dominant because of its usage pattern, and capacity. This noise is contributed by various vehicle systems like engine, transmission, exhaust intake, tires etc. When the pass by noise levels exceeds regulatory limit, as per IS 3028, it is important for NVH automotive engineer to identify the sources & their ranking for contribution in pass by noise. The traditional methods of source identification such as windowing technique, sequential swapping of systems and subsystems which are time consuming.Also advanced method in which data acquisition with a synchronizing technology like telemetry or Wi-Fi for source ranking are effective for correctness.However they are time and resource consuming, which can adversely impact product development timeline.
Technical Paper

A Detailed Study to Evaluate Sporty Sound Character of Passenger Cars

2024-01-16
2024-26-0207
Sound signature design is gaining more importance within global auto manufacturers. ‘Sportiness’ is one of the important point to consider while designing a sound character of a car for passionate drivers and those who love aggressive driving. Nowadays automobile manufacturers are more focused in developing a typical sound signature for their cars as a ‘unique design strategy’ to attract a niche segment of the market and to define their brand image. Exhaust system is one of the major aggregate determining the sound character of ICE vehicles which in turn has the direct influence on the customer perception of the vehicle and the Brand image and also the human comfort both inside and outside the cabin. This research work focuses on novel approaches to identify frequency range and order content by a detailed study of subjective feelings based on psycho-acoustics. Sound samples of various benchmark sporty vehicles have been studied and analyzed based on sound quality parameters.
Technical Paper

Refined Driveline Isolation in Bus Vehicles

2024-01-16
2024-26-0205
NVH is of prime importance in buses as passengers prefer comfort. Traditionally vehicle NVH is analysed post completion of proto built however this leads to modifications, increases cost & development time. In modern approach physical validation is replaced by CAE. There are many sources of NVH in vehicle however this article is focused about the methodology to improve NVH performance of bus by analysing and improving the stiffness and mobility of various chassis frame attachment points on which source of vibrations are mounted or attached. In this study chassis frame attachment stiffness of Engine mounts and propeller shafts is focused.
Technical Paper

The Science of Engine Mounts and its Multidimensional Impact on Noise and Vibrations in Passenger Car

2024-01-16
2024-26-0203
A robust process of specifying engine mounting systems for internal combustion engines (ICE) has been established through decades of work and countless applications. Vehicle vibration is a critical consideration in the early stage of vehicle development. Apart from comfort, it also affects the overall vehicle's performance, reliability, Buzz-squeak and rattle (BSR), parts durability and robustness. The most dynamic system in a vehicle is the powertrain, a source of vibration inputs to the vehicle over the frequency range. The mounting system supports a powertrain in a vehicle and isolates the vibration generated from the powertrain to the vehicle. In addition, it also controls the overall dynamic movement of the powertrain system when the vehicle is subjected to road load excitations and avoids contact between the powertrain and other adjacent components of the vehicle.
Technical Paper

Utilizing Computed Tomography for Cell Characterization, Quality Assessment, and Failure Analysis

2024-01-16
2024-26-0189
Computed Tomography (CT) has become a potent instrument for non-invasive assessment of battery cell integrity, providing detailed insights into their internal structure. The present study explores the capabilities and advantages of employing CT for cell characterization through a systematic evaluation from various parameters. The evaluation results will be based on real-world experiments conducted on a standard battery cell, assessing the CT system’s ability to provide precise internal measurements, detect defects, and ensure the overall integrity of the cell. We outline a comprehensive framework that includes criteria such as system specifications, image quality, software capabilities, maintenance, service, and cost-effectiveness.
Technical Paper

Adaptive Steering System for Improved User Experience

2024-01-16
2024-26-0023
The steering system of an automobile serves as the initial point of contact for the driver and is a crucial determinant in the purchasing choice of the vehicle. The present steering system is equipped with a singular Electric Power Assisted Steering (EPAS) map, resulting in a consistent steering sensation during maneuvers conducted at both low and high velocities. Certain vehicles are equipped with a steering system that includes fixed driving modes that require manual intervention. This paper presents a proposed Machine Learning based Adaptive Steering System that aims to address the requirements and limitations of fixed mode steering systems. The system is designed to automatically transition between comfort and sports modes, providing users with the desired soft or hard steering feel. The system utilizes vehicle response to driver input in order to identify driving patterns, subsequently adjusting steering assist and torque automatically.
Technical Paper

Analysis and Mitigation of Grunt Noise in Hydraulic Power Assisted Steering Systems

2024-01-16
2024-26-0218
This paper addresses the "Grunt Noise" anomaly in Hydraulic Power Assisted Steering (HPAS) systems, detailing an extensive effort to resolve this disruptive issue. HPAS, while cost-efficient, faces challenges as it adapts to customer demands for reduced steering effort and enhanced handling. Intensified HPAS intervention requires components to withstand higher pressures and tighter tolerances, leading to occasional anomalies. "Grunt Noise" arises from Torsion bar (T-bar) resonance with fluid pressure pulsations. A comprehensive study identifies load conditions, transfer paths, and frequency bands, extending from vehicle to Pinion Valve assembly levels. Root cause analysis traces the issue from Steering Wheel to T-bar, validating the approach. The T-bar's twisting operation renders torsional stiffness crucial for Grunt Noise. Lower stiffness T-bar, when overpowered by liquid force, causes microsecond imprecise valve openings, leading to cavitation-induced Rack & Pinion vibrations.
Technical Paper

A Design Approach to Optimize Suspension Clunking Noise in Passenger Vehicles

2024-01-16
2024-26-0226
Designing a Passenger vehicles suspension system is a key challenge for all OEMs because balancing buzz, squeak, and rattle (BSR) acoustic performance at low-speed driving and improving ride quality at high-speed driving conditions are bet challenging. Suspension noise deteriorates in-cab acoustic quietness and overall vehicle performance. For this reason, optimizing these noises is becoming increasingly prioritized as a key design issue throughout the development process of suspension system. This paper studies the various components of suspension system and their noises in Passenger vehicles. Based on customer voice index and drive pattern, suspension anomalous Clunking noise was identified in Passenger vehicles. This noise phenomenon was cascaded from the vehicle level to BSR rig and eventually to the suspension rig for root cause analysis.
Technical Paper

Crank-Train System Balancing and Crankshaft Optimization in Different Outlook

2024-01-16
2024-26-0209
IC (Internal Combustion) engines are evolved and refined over time to greater levels of technology in terms of emission, performance, NVH (Noise, Vibration & Harshness), and design philosophy. Crank-train generates a greater impact on NVH optimization due to its geometry and dynamics. Hence, more attention to mass balancing is required to minimize the negative impact on NVH. The present work demonstrates the evaluation of balancing rate of crank-train system from the first principle of couple balancing. Calculations are conducted at the concept stage to estimate an internal rotating couple balancing of crank-train system due to counterweights and rotating masses. As crankshaft weighs approximately 10-12% weight of an engine and its counter weight plays a vital role in balancing, its optimization will result in a significant impact on NVH.
Technical Paper

Simulation Techniques for Liquid Gasket Sealing Performance Prediction

2024-01-16
2024-26-0267
In the automotive industry, silicon adhesive has become increasingly popular due to its benefits in ease of assembly and cost savings associated with material and manufacturing processes. To meet the imperative of minimizing both time and expenses during the project's development phase, it becomes essential to select the appropriate gasket material and an optimal flange design at the outset of the design process. In order to achieve stringent emission standards such as Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFE) norms, a better sealing performance is an essential parameter. Various types of liquid gaskets such as silicon rubber based Room Temperature Vulcanizing (RTV) sealants and thermoset plastic based Anaerobic sealants are widely used in an Internal Combustion engine. They are commonly used for the components such as oil sump, bedplate, and gearbox housings, etc.
Technical Paper

Fatigue Assessment & Test Correlation of Seam Welded Joints Using Force Based Equivalent Structural Stress Solid Weld Approach

2024-01-16
2024-26-0268
The stress concentration at welded joints and small crack propagation from some pre-existing discontinuities at notched regions control the fatigue life of typical welded structures. There are numerous FEM stress-based weld fatigue assessment approaches available commercially which unify FEM stresses with various fatigue software codes embedded with international weld standards. However, FEM stress-based approaches predict extensively conservative results. Considerable efforts & subjective decision making is required to arrive at desired level of weld life correlation with physical test results, in terms of weld life and failure location. This is majorly because of inconsistency & inaccuracy in capturing the hot spot stress results due to stress singularities occurring at the notched regions owing to the mesh sensitivity, modeling complexity.
Technical Paper

CAE Based Benchmarking of Shaft Deflection for Transmission Gear Rattle Noise

2024-01-16
2024-26-0245
Vehicle transmission gear rattle is one of the most critical NVH irritants for refined vehicles. It is perceived more dominantly in lower gears of vehicle running. It depends on various design parameters like engine input torque amplitude & fluctuations, driveline torsional vibrations, gear micro & macro geometry, shaft flexibility, etc. Establishing exact contribution of each of these parameters to transmission rattle, thru experimental or simulation technique, is very challenging. Current paper explains the NVH CAE benchmark approach deployed to understand difference in rattle behavior of two transmission designs. Paper focuses on simulation of gear impact power and its sensitivity to transmission shaft deflections.
Technical Paper

Simulation Methodology Development for Vibration Test of Bus Body Structure Code AIS-153:2018

2024-01-16
2024-26-0249
A bus is integral part of public transportation in both rural and urban areas. It is also used for scheduled transport, tourism, and school transport. Buses are the common mode of transport all over the world. The growth in economy, the electrification of public transport, demand in shared transport, etc., is leading to a surge in the demand for buses and accelerating the overall growth of the bus industry. With the increased number of buses, the issue of safety of passengers and the crew assumes special importance. The comfort of driver and passenger in the vehicle involves the vibration performance and therefore, the structural integrity of buses is critically important. Bus safety act depicts the safety and comfort of bus operations, management of safety risks, continuous improvement in bus safety management, public confidence in the safety of bus transport, appropriate stakeholder involvement and the existence of a safety culture among bus service providers.
Technical Paper

A Study on Effect of Regenerative Braking on Vehicle Range and Axle Life

2024-01-16
2024-26-0240
This paper aims at analysing the effect of regeneration braking on the amount of energy harnessed during vehicle braking, coasting and its effect on the drive train components like gear, crown wheel pinion, spider gear & bearing etc. Regenerative braking systems (RBS) is an effective method of recovering the kinetic energy of the vehicle during braking condition and using this to recharge the batteries. In Battery Electric Vehicles (BEV), this harnessed energy is used for controlled charging of the high voltage batteries which will help in increasing the vehicle range eventually. Depending on the type of the powertrain architecture, components between motor output to the wheels will vary, i.e., in an e-axle, motor is coupled with a gear box which will be connected with differential and the wheels. Whereas in case of a central drive architecture, motor is coupled with gearbox which is connected with a propeller shaft and then the differential and to the wheels.
Technical Paper

Enhanced Development Process for UPDs – Digital Approach

2024-01-16
2024-26-0239
Underrun Protection devices (UPDs) are specially designed barriers fitted to the front, side, or rear of heavy trucks. In case of accidents, these devices prevent small vehicles such as bikes and passenger cars going underneath and thus minimizing the severity of such accident. Design and strength of UPD is such that it absorbs the impact energy and offers impact resistance to avoid the vehicle under run. Compliance to UPD safety regulations provides stringent requirements in terms of device design, dimensions, and its behavior under impact loading. Since accuracy of Computer Aided Engineering (CAE) predictions have improved, numerical tools like Finite element method (FEM) are extensively used for design, development, optimization, and performance verification with respect to target regulatory performance requirements. For improved accuracy of performance prediction through FEA, correct FE representation of sub-systems is very important.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
X