Refine Your Search

Topic

Author

Search Results

Technical Paper

Geometry, Sizing and Optimization of Honeycomb Structures along with Embedded Metal Inserts on the Floor for Truck-Mounted Container Applications

2024-01-16
2024-26-0186
With the rise of worldwide trends towards light weighting and the move towards electric vehicles, it is now more important than ever for the automotive industry to develop and implement lightweight materials that will result in significant weight reduction and product improvements. A great deal of research has been done on how to best combine and configure honeycomb cores with the right face sheets for Truck-Mounted Container Applications. Honeycomb structures possess the ability to bring about superior structural rigidity when the core parameters are selected and optimized based on the automotive application requirements.
Technical Paper

Refined Driveline Isolation in Bus Vehicles

2024-01-16
2024-26-0205
NVH is of prime importance in buses as passengers prefer comfort. Traditionally vehicle NVH is analysed post completion of proto built however this leads to modifications, increases cost & development time. In modern approach physical validation is replaced by CAE. There are many sources of NVH in vehicle however this article is focused about the methodology to improve NVH performance of bus by analysing and improving the stiffness and mobility of various chassis frame attachment points on which source of vibrations are mounted or attached. In this study chassis frame attachment stiffness of Engine mounts and propeller shafts is focused.
Technical Paper

The Science of Engine Mounts and its Multidimensional Impact on Noise and Vibrations in Passenger Car

2024-01-16
2024-26-0203
A robust process of specifying engine mounting systems for internal combustion engines (ICE) has been established through decades of work and countless applications. Vehicle vibration is a critical consideration in the early stage of vehicle development. Apart from comfort, it also affects the overall vehicle's performance, reliability, Buzz-squeak and rattle (BSR), parts durability and robustness. The most dynamic system in a vehicle is the powertrain, a source of vibration inputs to the vehicle over the frequency range. The mounting system supports a powertrain in a vehicle and isolates the vibration generated from the powertrain to the vehicle. In addition, it also controls the overall dynamic movement of the powertrain system when the vehicle is subjected to road load excitations and avoids contact between the powertrain and other adjacent components of the vehicle.
Technical Paper

NVH Refinement of Small Commercial Vehicle

2024-01-16
2024-26-0219
In today's volatile market environment, and with the change of user priorities, NVH refinement results in silent, vibration-free vehicle. The commercial vehicle industry is also starting to embrace this development in NVH vehicle refinement. There are health concerns associated with the discomfort experienced by occupants. This calls for cabins with no boom noise and less tactile vibrations. Noise within the vehicle is contributed by excitation from the Powertrain, Intake, Exhaust system, driveline, road excitations, suspension (structure borne noise) and its radiation into the air (air borne noise). This paper discusses the approach used to reduce “In-cab boom” noise in the operating speed sweep condition and seat track vibration during engine IDLE condition to improve driver comfort. In this paper NVH refinement was carried out on small commercial vehicles.
Technical Paper

Application of Hydraulically Controlled Rear Mount to Mitigate Key on/off Requirement of Passenger Car

2024-01-16
2024-26-0210
Key on/off (KOKO) Vibration plays a vital role in the quality of NVH (Noise Vibration and Harshness) on a vehicle. A good KOKO experience on the vehicle is desirable for every customer. The vibration transfer to the vehicle can be refined either by reducing the source vibrations or improving isolation efficiency. For the engine mounting system of passenger cars, the mounts are an isolating element between the powertrain and receiver. Various noise, Vibration, and harshness criteria must be fulfilled by mounting system performance like driver seat rail vibration (DSR), tip-in/tip-out, judder performance, DSR at idle and Key on/off Vibration. Out of these requirements, in the paper, the investigation is done on KOKO improvement without affecting other NVH parameters related to mount performance. Higher damping is required to isolate Vibration generated during the Key-on event, and lower damping is required during the idle condition of the vehicle.
Technical Paper

Crank-Train System Balancing and Crankshaft Optimization in Different Outlook

2024-01-16
2024-26-0209
IC (Internal Combustion) engines are evolved and refined over time to greater levels of technology in terms of emission, performance, NVH (Noise, Vibration & Harshness), and design philosophy. Crank-train generates a greater impact on NVH optimization due to its geometry and dynamics. Hence, more attention to mass balancing is required to minimize the negative impact on NVH. The present work demonstrates the evaluation of balancing rate of crank-train system from the first principle of couple balancing. Calculations are conducted at the concept stage to estimate an internal rotating couple balancing of crank-train system due to counterweights and rotating masses. As crankshaft weighs approximately 10-12% weight of an engine and its counter weight plays a vital role in balancing, its optimization will result in a significant impact on NVH.
Technical Paper

Enhanced Development Process for UPDs – Digital Approach

2024-01-16
2024-26-0239
Underrun Protection devices (UPDs) are specially designed barriers fitted to the front, side, or rear of heavy trucks. In case of accidents, these devices prevent small vehicles such as bikes and passenger cars going underneath and thus minimizing the severity of such accident. Design and strength of UPD is such that it absorbs the impact energy and offers impact resistance to avoid the vehicle under run. Compliance to UPD safety regulations provides stringent requirements in terms of device design, dimensions, and its behavior under impact loading. Since accuracy of Computer Aided Engineering (CAE) predictions have improved, numerical tools like Finite element method (FEM) are extensively used for design, development, optimization, and performance verification with respect to target regulatory performance requirements. For improved accuracy of performance prediction through FEA, correct FE representation of sub-systems is very important.
Technical Paper

One Dimensional (1-D) Simulation Model for Ride and Comfort Evaluation of a Two Axle Truck

2024-01-16
2024-26-0299
In automotive industry, testing and validation teams are highly dependent on availability of prototype vehicles for testing and evaluation of ride & comfort behavior of vehicles. Special test tracks surfaces are also used (namely Tar road, Express way and driving over a Cleat) to evaluate the ride & comfort through subjective evaluation. Ride is largely affected by transmissibility of road excitations to the driver and other occupant’s seats, influence of suspension, bushes and tire are the major contributors in the transfer path of vibrations. A configurable 1–D simulation model of a Two Axle Truck is developed for quick evaluation of the ride & comfort behavior which is need of the hour for the testing team in optimizing the number of iterations in physical testing. These simulations will help in understanding the ride & comfort behavior and its sensitivity to changes in the component’s characteristics in absence of physical test vehicles.
Technical Paper

Digital Approach for Design of Modular, Scalable Futuristic Instrument Panel for Commercial Vehicle

2024-01-16
2024-26-0387
Road infrastructure in India is being upgraded at a rapid pace. Quality of life of people has also improved significantly in the last decade. Such trends have significantly impacted design of commercial vehicles and vehicular systems in the country. This paper deals with the design and development of a modern futuristic instrument panel for trucks. Methodology to arrive at product features and solutions which retain their novelty and appeal for a longer term has also been illustrated. Regulatory scenario, modularity, HMI, Perceived Quality, Driver Comforts, evolving technologies, trends and materials are some of the considerations which have discussed in detail. International benchmarks and customer requirement have been analyzed for setting Performance targets. A digital approach for evaluating these considerations evolved during the design and development process has been elaborated in detail.
Technical Paper

Powertrain Mounting System NVH Simulation Methodology Using Transfer Path Analysis Technique for Electric Vehicles

2024-01-16
2024-26-0225
In comparison to traditional gasoline-powered vehicles, Electric vehicles (EVs) development and adoption is driven by several factors such as zero emissions, higher performance, cost effective in maintenance, smoother and quieter ride. Global OEMs are competing to provide a reduced in-cab noise for ensuring a smooth and quiet driving experience. Short project timelines for EV demands quick design and development. In initial stages of project, input data availability of EV is limited and a simplified approach is necessary to accelerate the development of vehicle. This paper focuses on simulation methodology for predicting structure borne noise from powertrain deploying Transfer Path Analysis approach. Current simulation methodology involves full vehicle model with multiple flexible bodies and full BIW flexible model which leads to complex modelling and longer simulation times.
Technical Paper

Optimization of Drum Brake System in HCVs Using Two-Way Coupled CFD Approach

2023-11-05
2023-01-1874
The brake systems are given top priority by automotive OEMs in the development of medium and heavy commercial trucks and buses, which can carry increased loads. When trucks and buses are travelling at high speeds or crossing downhill, during braking operations, the friction faces (brake drum and liner) experience a significant rise in temperature due to the conversion of kinetic energy into heat energy within seconds. This lowers the friction coefficient at the interface, resulting in distortions, thermal cracks, hub grease burning, and overheating. Drum brake system designs must be improved and optimized to dissipate more heat from the brake drum assembly and prevent brake failure. Nowadays advance transient numerical simulations assist in the design, development and optimization of the brake system to visualize 3D flow physics and temperature variations throughout the brake duty cycles. In the current study, different Cases of drum brakes to improve cooling efficiency are evaluated.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Journal Article

1D Mathematical Model Development for Prediction and Mitigation of Vehicle Pull Considering Suspension Asymmetry and Tire Parameters

2021-09-22
2021-26-0502
Error in suspension asymmetry or tire parameters may lead to vehicle drifting laterally from its intended straight-line path, which is called vehicle pull. Driver then needs to apply constant steering correction to maintain the vehicle in straight line which will lead to high driver fatigue and deteriorate driving experience. Manufacturing a perfectly symmetric suspension system is impractical, however an insight into the manufacturing tolerances of suspension system at the early design stage can be extremely useful. Also tire force and moment parameters at straight line operation and its maximum allowable variations will help in defining the tire parameter specifications and tolerances. The objective of this study was to develop a 1D model of suspension and tire system which can predict the torque experienced in steering and drift of the vehicle from straight line due to the tire force and moment and asymmetric suspension geometry.
Technical Paper

Customized and Market Specific Thermal Robust Clutch System Solution

2021-09-21
2021-01-1239
The goal of reducing fuel consumption and CO2-Emission is leading to turbo-charged combustion engines that deliver high torque at low speeds (down speeding). To meet NVH requirements damper technologies such as DMF (Dual Mass Flywheel) are established, leading to reduced space for the clutch system. Specific measures need to be considered if switching over from SMF (Single Mass Flywheel) to DMF [8]. Doing so has an impact on thermal behavior of the clutch system, for example due to reduced and different distribution of thermal masses and heat transfer to the surroundings. Taking these trends into account, clutch systems within vehicle powertrains are facing challenges to meet requirements e.g. clutch life, cost targets and space limitation. The clutch development process must also ensure delivery of a clutch system that meets requirements taking boundary conditions such as load cycles and driver behavior into account.
Technical Paper

Design, Simulation & Optimization of an Air Intake System to Reduce Induction Noise

2019-01-09
2019-26-0191
Air intake system (AIS) plays a major role in reducing the noise level in passenger car compartment, which has become an important requirement due to increasing customer expectation for better in cab noise. The ideal air intake system design should have minimum possible noise at snorkel entry point which ultimately contributes in cabin noise. There are different techniques that are implemented for an air intake system noise reduction e.g. choosing proper location of air entry suction point in engine bay compartment, suitable design for air filter box (volume), duct designs etc. Further design improvement are possible with an addition of tuned resonators in the system. An addition of resonator have major effect seen in reducing air induction noise and to meet target Sound Pressure Levels (SPL). But at the same time, selecting the correct type of resonator, its position & volume, frequency/s band at which resonator is tuned are important parameters.
Technical Paper

Virtual Road Torque Data Collection

2019-01-09
2019-26-0289
The traditional method of collecting the Road Torque Data of a vehicle is by instrumenting and running the vehicle on different road terrains. Every time, physical testing becomes tedious & most challenging task due to unavailability of unit under tests, kind of resource required and so on. However, in view of response to the fast emerging technology & limit less competition, it has become mandatory to develop & launch products in market within no time. In recent times, there is increased demand for physical road torque data measurements for a vehicle program based on its application and different powertrain configurations, which clearly shows that unless we front load the data to design it is practically impossible to meet the deadlines. Each of these measurements cost and consumes valuable resources of the company in collecting and analyzing the data.
Technical Paper

An Engine Stop Start System with Driver Behavior Learning and Adaption for Improving the User Experience

2018-04-03
2018-01-0609
Engine Stop/Start System (ESS) promises to reduce greenhouse emissions and improve fuel economy of vehicles. Previous work of the Authors was concentrated on bridging the gap of improvement in fuel economy promised by ESS under standard laboratory conditions and actual driving conditions. Findings from the practical studies lead to a conclusion that ESS is not so popular among the customers, due to the complexities of the system operation and poor integration of the system design with the driver behavior. In addition, due to various functional safety requirements, and traffic conditions, actual benefits of ESS are reduced. A modified control algorithm was proposed and proven for the local driving conditions in India. The ways in which a given driver behaves on the controls of the vehicles like Clutch and Brake Pedals, Gear Shift Lever were not uniform across the demography of study and varied significantly.
Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

Optimisation of Engine Mounting System for Reduction in Lateral Shake and Drive Away Shudder on Vehicle

2017-06-05
2017-01-1822
In this study we will be discussing two issues related to vibrations which effect car owners. The first one, called lateral shake, can be described as a lateral vibration felt by customer in low speed of around 1200rpm, when vehicle shakes severely in Y-direction. The vibration is significantly felt at the thighs of passengers. A 16DOF rigid body model is established to simulate the power train & body system. The second vibration issue, called drive away shudder (also known as clutch judder/chatter/shudder) is a vibration felt by customers at the time of marching off. The vibration is significantly felt at the time of clutch engagement as a shiver in vehicle. While the common solution of shudder is to optimize clutch friction & engagement, in this study solution has been provided by optimizing the power train mounting system. Clutch shudder is observed on a medium sized car when driven in the range of 10-20 Km/h.
Journal Article

Study of Frequency Characteristics of Vehicle Motions for the Derivation of Inherent Jerk

2016-04-05
2016-01-1681
Jerk in a vehicle is a feel of user which appears due to sudden acceleration changes. The amplitude and frequency components of the jerk defines quality of an engine or an AMT calibration tuning. Traditional jerk evaluation methods use amplitude (peak) of the jerk as a performance index and its frequencies are either used as weighing factor with amplitude or not taken into account. A method is proposed in this paper to quantify and differentiate the non-acceptable level of jerk which is perceivable to human body. Jerk is obtained by differentiating the acceleration data which contains the frequencies in the lower to higher range. Differentiation of such signal causes an amplification of undesired noise in both analog and digital circuits. This results in significant loss or disturbances in the useful data.
X