Refine Your Search

Topic

Author

Search Results

Technical Paper

Enhanced Development Process for UPDs – Digital Approach

2024-01-16
2024-26-0239
Underrun Protection devices (UPDs) are specially designed barriers fitted to the front, side, or rear of heavy trucks. In case of accidents, these devices prevent small vehicles such as bikes and passenger cars going underneath and thus minimizing the severity of such accident. Design and strength of UPD is such that it absorbs the impact energy and offers impact resistance to avoid the vehicle under run. Compliance to UPD safety regulations provides stringent requirements in terms of device design, dimensions, and its behavior under impact loading. Since accuracy of Computer Aided Engineering (CAE) predictions have improved, numerical tools like Finite element method (FEM) are extensively used for design, development, optimization, and performance verification with respect to target regulatory performance requirements. For improved accuracy of performance prediction through FEA, correct FE representation of sub-systems is very important.
Technical Paper

Conversion of Diesel Fuel System to CNG Fuel System for Commercial Vehicles

2024-01-16
2024-26-0382
CNG fuel has recently gained popularity in passenger and commercial vehicles due to its lower cost of operation compared to gasoline and diesel. It is also a more environmentally friendly fuel than other fuels. Converting a customer vehicle with a Diesel option to a CNG option is more difficult than building a new CNG vehicle. In this we are outlining the design of CNG fuel systems and the challenges of replacing them during the transition from Diesel to CNG and qualifying the Government Norms for running the vehicle will increase the life as well as make our environment more eco-friendly than diesel vehicles.
Technical Paper

Design Implementation through Computational Fluid Dynamics (CFD) Analysis to Reduce Fuel Filling Time in NGVs

2024-01-16
2024-26-0309
In the past few decades CNG (Compressed Natural Gas) fuel growing as an alternate fuel due to its more economically as compared to Gasoline & Diesel fuels by vehicle running cost in both passenger as well as commercial vehicles, additionally it is more environment friendly & safer fuel with respect to gasoline & diesel. At standard temperature & pressure fuel density of Natural Gas (0.7-0.9 kg/m3) is lower than Gasoline (715-780 kg/m3), Diesel (849~959 kg/m3), therefore CNG fuel require higher storage space as compared to Gasoline & Diesel & also it stores at very high pressure (200-250 bar) to further increase the fuel density 180 kg/m3 (at 200 bar) and for 215 kg/m3 (at 250 bar) in CNG cylinders so that max fuel contains in the cylinders and increase the vehicle running range per fuel filling & reduces its fuel filling frequency at filling stations.
Technical Paper

E-Drive System Selection Criterion for EV Commercial and Passenger Vehicles Segments

2024-01-16
2024-26-0253
Climate change due to global warming are major concerns. Electric vehicles are one of the promising technologies to curb the climate change by reducing CO2 emissions significantly. Electric vehicle component selection is a complex process, which has to fulfil multiple requirements with trade-off between performance & efficiency, efficiency & cost, performance & NVH, packaging & performance etc. In addition, E-drive selection in passenger & commercial vehicle is different due to application difference. Hence, it is a great challenge to select right E-Drive comprising motor, MCU and overall gear ratio to meet EV program constraints and targets. This study focuses on criterion used for selecting an E-Drive system comprising motor, MCU and overall gear ratio for electric vehicles in commercial and passenger vehicle segments.
Technical Paper

Design Optimization of Engine Cooling System for Light Duty Diesel Engine for Weight and Cost Reduction Purpose

2022-03-29
2022-01-0610
Engine cooling systems for vehicles are used for cooling the engine fluids. The cooling system normally consists of following components: radiator, expansion tank, cooling fan, fan drive and shroud. The mounting structure for this system must be designed to withstand the loads that will be imposed by the vehicle operation which consists of stresses such as those caused by linear static and dynamic loading. Automotive industries perform various tests on vehicles in the end-user environment to reduce failures; these investigations are carried out on the design using finite element method (FEM). Finite element methods are being used routinely to analyze for structural behavior. Modeling is done with CATIA software, meshing is carried out with HYPERMESH software and solution is acquired using NASTRAN solver.
Technical Paper

Advanced BEV Battery Pack Thermal Simulation Model Development & Co-relation with Physical Testing

2021-09-15
2021-28-0138
Battery Thermal management is a major challenge for occupant safety in an electric vehicle. Predicting the battery electrical losses and thermal behaviour is another challenge for the battery management system. Different virtual models are developed for cell level and pack level thermal evaluation. All these models have a varying degree of accuracy and limitation. The latest developed model is more accurate and can predict the battery cell & pack level temperatures. The battery can be modeled in different ways, ECM (Electrochemical model), EIS (Electrochemical Impedance Spectroscopy) [1]. Newman model is a well-known electrochemical model. [2]. EIS uses a combination of DC and small AC signal [3,4]. ECM model also used for estimating SOC and in BMS [5]. The cell temperature in the battery pack not only depends upon the cell inside physics but also depends upon cell outside cooling physics. Cell outside physics is simulated by 3D CFD software during the design process [6].
Technical Paper

Improved Calculation Methodology for Design of Connecting Rod Considering Fatigue Loads and Stresses in IC Engine

2020-09-25
2020-28-0335
In this work, Calculations and design of connecting rod of IC engine is performed in innovative way. Calculation point of view, Con rod is the utmost critical component of IC Engine as it is the part which translates reciprocating forces into rotary forces and thus creates unbalance in engine. From the functionality point of view, connecting rod must have the higher inertia at the lowest weight. Different forces acting on con rod are: - Peak combustion pressure, inertia force of reciprocating masses, Weight of Reciprocating parts and frictional forces due to cylinder wall thrust. It experiences complex forces of compression and tensile in cyclic manner, which repeats after each 720 (in case of 4 stroke) or 360 (in case of 2 stroke) phase of degree. Hence, the design calculations are analyzed for the axial compressive as well as axial tensile loads considering the fatigue strength of con rod. This literature computes the required size and strength in the critical areas of failure.
Technical Paper

Design & Development of Metal Matrix Based Mounting Bracket for Commercial Vehicle Application

2020-09-25
2020-28-0463
Automakers are being subjected to increasingly strict fuel economy requirements which led OEMs to focus more on Light weighting and Energy efficiency areas. Considering the aforesaid challenges, efforts have been taken in Light weighting of mounting bracket for Engine application. This paper deals with conversion of Engine accessory bracket from Aluminum material to Metal Matrix composite (MMC). In Design phase, existing bracket has been studied for its structural requirements and further Bracket is designed to meet MMC process requirement and CAE carried out for topology optimization and Structural integrity. Finally observations and results were compared for Existing design and Proposed design and further optimization proposed.
Technical Paper

Enhancing Productivity in Design by Front Loading and Simultaneous Engineering Using CAD Morphing

2020-04-14
2020-01-0496
Automotive OEMs are launching multiple products with ever reducing development time, balancing costs, quality and time to market, with clear focus on performance and weight. Platform architecture concepts, modular designs for differentiation etc. are strategies adopted by automotive OEMs towards shorter development cycles. Thus, concept generation phase of the digital product development process is expected to enable generation and evaluation of multiple concept architectures, carry out performance studies and largely focus on optimization, upfront. This Front loading of engineering and call for simultaneous engineering requires support in terms of quick and good CAD modeling with maturity. This paper proposes a process that focuses on generation and evaluation of multiple concepts, besides enabling optimization of concept before the detailed design phase kicks in.
Technical Paper

Headliner Trim Design Methodology Development with Finite Element Simulation and Optimization Considering Multi Domain Performance

2020-04-14
2020-01-1099
Passenger cars in the top segment have seen fast growth over the last few decades with an increasing focus on luxury, convenience, safety and the quality of driver experience. The headliner is a decorative and functional trim system covering the underside of the roof panel. It enhances the aesthetics and elegance of the car interiors. In premium vehicles, the headliner system has to suffice interior quietness and integrity apart from the performance and regulatory requirements. The Design Validation Plan requirements cover its contribution to the vehicle interior noise control, occupant safety, and perception of build quality. Contributions can be very significant and primarily be determined by design and material parameters. Also, headliner interactions with an adjacent body in white structure are crucial from performance point of view. Various foam options are available with different functions such as structural, acoustic, and energy-absorption.
Technical Paper

Optimizing Steering Column Layout and UJ Phase Angle to Enhance Vehicle Dynamics Performance

2019-02-05
2019-01-5010
Vehicle dynamics is one of the most important vehicle attributes. It is classified into three domains, the longitudinal, vertical, and lateral dynamics. This paper focuses on optimizing the lateral vehicle dynamics which is driven by the straight ahead controllability and cornering controllability of the vehicle. One of the important parameters that dictates these sub-attributes is the steering ratio. Therefore, designing the right steering ratio is critical to meet the vehicle “specific” targets. Significant amount of work has been done by many researchers on variable steering ratio by implementing variable gear ratio (VGR) rack, active steering, and steer-by-wire systems. This paper discusses the methodology and considerations to optimize the steering ratio for a constant gear ratio rack by optimizing the steering column layout, viz., orientation and the phase angle in universal joints.
Technical Paper

Adhesive Failure Prediction in Crash Simulations

2019-01-09
2019-26-0297
Structural adhesive is a good alternative to provide required strength at joinery of similar and dissimilar materials. Adhesive joinery plays a critical role to maintain structural integrity during vehicle crash scenario. Robust adhesive failure definitions are critical for accurate predictions of structural performance in crash Computer Aided Engineering (CAE) simulations. In this paper, structural adhesive material characterization challenges like comprehensive In-house testing and CAE correlation aspects are discussed. Considering the crash loading complexity, test plan is devised for identification of strength and failure characteristics at 0°, 45°, 75°, 90°, and Peel loading conditions. Coupon level test samples were prepared with high temperature curing of structural adhesive along with metal panels. Test fixtures were prepared to carryout testing using Instron VHS machine under quasi-static and dynamic loading.
Technical Paper

Body in White Weight Optimization Using Equivalent Static Loads

2018-04-03
2018-01-0482
Structural optimization has evolved vastly based on the development of computational based analysis – CAE. Structural optimization is usually a linear static response optimization because nonlinear response structural optimization is very expensive to perform. But in the real world, most of the automobile load cases are non-linear in nature. Equivalent static load structural optimization is a structural optimization method where Equivalent Static Loads (ESLs) are utilized as external loads for linear static response optimization. ESL is defined as the static load that generates the similar displacement by an analysis which is not linear static. This paper explains the development of a weight optimized BIW structure from an already existing model satisfying the NVH and Crash requirements. Basic structural crash loads are converted into ESLs with appropriate constraints.
Technical Paper

Thermal Performance Prediction of Jet Lubricated Transmission System using Computational Methods

2017-10-08
2017-01-2437
The jet lubrication method is extensively used in the constant mesh high performance transmission system operating at range of speeds though it affects mechanical efficiency through spin power loss. The lubrication jet has a key role to maintain the meshing gears at non-fatal thermal equilibrium by effectively dissipating the heat generated to the surrounding. Heat transfer coefficient (HTC) is the indicator of the thermal behavior of the system, which provides great insight of efficient lubrication system that needs to be employed for prescribed type of transmission. In this study, a segment of the transmission unit which constitutes a gear pair is used for the simulation. Parametric study is carried out by considering the critical parameters affecting the thermal performance such as lubrication jet flow rate and rotational motions of the gears with speeds and temperatures.
Technical Paper

Sensitivity Analysis of Windshield Defrost Characteristics Impact on Occupant Thermal Comfort

2017-03-28
2017-01-0143
During cabin warm-up, effective air distribution by vehicle climate control systems plays a vital role. For adequate visibility to the driver, major portion of the air is required to be delivered through the defrost center ducts to clear the windshield. HVAC unit deliver hot air with help of cabin heater and PTC heater. When hot air interacts with cold windshield it causes thermal losses, and windshield act as sink. This process may causes in delay of cabin warming during consecutive cabin warming process. Thus it becomes essential to predict the effect of different windscreen defrost characteristics. In this paper, sensitivity analysis is carried for different windscreen defrosts characteristics like ambient conditions, modes of operation; change in material properties along with occupant thermal comfort is predicted. An integrated 1D/3D CFD approach is proposed to evaluate these conditions.
Technical Paper

The Cyclic Strain Life Physical Test Correlation Using CAE

2016-04-05
2016-01-1369
Fatigue life predictions using the strain-life method are used in the design of modern light weight vehicle, for the complex loading that occur with the structural durability tests that these vehicles undergo. The accuracy of these predictions is dependent upon the many factors; geometry, loads & materials etc. This paper details a new procedure to ensure the quality and accuracy of the material parameters for the fatigue life prediction software. The material parameters for the solver are obtained by performing strain-controlled fatigue tests. The geometry of the coupons tested is determined by size and thickness of the material specimen that they are machined from and the loading regime in the test. Detailed data analyzed is conducted on these tests and the parameters that are used as input into the CAE strain-life fatigue prediction software are generated.
Technical Paper

Reduce Cost of Product Design using Unit FE Simulation

2016-04-05
2016-01-1371
The unit analysis methodology can be used for designing component or product in a product development process. This method may be used for designing the crush can, bumper beam, crush can long member, B-frame or A-pillar in frontal impact analysis. Unit assembly model technique can be effectively used in many CAE load cases to evaluate CAE simulations such as pedestrian impact analysis (ECE R78 / ENCAP), interior trim related head impact simulations (FMVSS201U), under run protection simulation for commercial vehicles (Front Underrun Protection Device ECE R93, Rear Underrun Protection Device ECE R58, Side Underrun Protection Device ECE R73), airbag deployment optimization etc. These CAE analyses correlate better with actual test. This paper gives idea about how the cost of product design can be reduced by using unit analysis. To reduce time of vehicle development such as cost of prototype, testing cost, optimization cost unit analysis is more economical.
Technical Paper

Common Automobile Program to Improve Mass Transportation

2016-04-05
2016-01-0154
This paper describes the Common Automobile Program (CAP) that can be implemented to improve mass transportation. CAP is the use of automated electric vehicles using smart navigation and control technologies to improve mass transportation. In CAP, common vehicles are used by different passengers, thus, reducing the on-road traffic and also the parking space required. Various low-cost stations are to be built along specified paths and the vehicle can be used at the convenience of the commuter. Currently, buses and trains require the passengers to wait at the station and a significant amount of time is spent at intermediate stops. The vehicle in CAP runs directly from origin to destination and also eliminates the waiting time at stations. Passengers do not wait for vehicles; instead vehicles wait for the passengers. The journey starts as the passenger enters the station and selects the destination.
Technical Paper

Optimization of Sheet Metal Bracket by Use of Thermoplastics

2016-02-01
2016-28-0224
Reducing overall weight of the vehicle is one of the main areas of research in automotive industries. Current trend, CO2 reduction, is a major incentive for this process. For this, engineers are finding out various ways to reduce weight to strength ratio of the different components. The immediate pay-off of such developments is lower fuel consumption, which is followed by lower CO2 emissions. For this engineers opt for, use of low-density and high-strength materials, along with optimization of the geometry of the components. One of the solutions is to convert metal parts to plastics which have desired properties. The main focus of this paper is to convert the sheet metal brackets to plastic brackets which will ultimately reduce weight and production cost associated with automobile. In this paper, an optimum process, using Topology optimization and Mold Flow Analysis, is developed to convert sheet metal bracket to plastic bracket.
Technical Paper

Air Compressor Duty Cycle Reduction in Passenger Bus Application

2015-04-14
2015-01-0139
Today urban buses are equipped with more air consuming devices for an example pneumatic doors, exhaust brake, air suspension and in SCR system to name a few. This has resulted in higher air demand leading to high compressor duty cycles which cause conditions (such as higher compressor head temperatures) that may adversely affect air brake charging system performance. These conditions may require additional maintenance due to a higher amount of oil vapor droplets being passed along into the air brake system. Factors that add to the duty cycle are air suspension, additional air accessories, use of an undersized compressor, frequent stops, excessive air leakage from fittings, connections, lines, chambers or valves, etc. This paper discussed about methodology used to reduce air consumption of air consuming devices used in urban bus application. Performance assessment of air consuming devices with minimum available air pressure was conducted and found satisfactory.
X