Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Miller Cycle and Internal EGR in Diesel Engines Using Alternative Fuels

2024-07-02
2024-01-3020
The Single Cylinder Research Engine (SCRE) at the Institute of Internal Combustion Engines and Powertrain Systems is equipped with a variable valve train that allows to switch between regular intake valve lift and early intake valve closing (Miller). On the exhaust side, a secondary valve lift on each valve is possible with adjustable back pressure and thus the possibility of realising internal EGR. In combination with alternative fuels, even if they are Drop-In capable as HVO, properties differ and can influence the emission and efficiency behaviour. The investigations of this paper are focusing on regenerative Drop-In fuel (HVO), fossil fuel (B7), and an oxygenate (OME), that needs adaptions at the engine control unit, but offers further emission potential. By commissioning a 2-stage boost system, it is possible to fully equalize the air mass in Miller mode compared to the normal valve lift.
Technical Paper

Computational Method to Determine the Cooling Airflow Utilization Ratio of Passenger Cars Considering Component Deformation

2024-07-02
2024-01-2975
In order to improve the efficiency of passenger cars, developments focus on decreasing their aerodynamic drag, part of which is caused by cooling air. Thus, car manufacturers try to seal the cooling air path to prevent leakage flows. Nevertheless, gaps between the single components of the cooling air path widen due to the deformation of components under aerodynamic load. For simulating the cooling airflow utilization ratio (CAUR), computational fluid dynamics (CFD) simulations are used, which neglect component deformation. In this paper, a computational method aiming at sufficient gap resolution and determining the CAUR of passenger cars under the consideration of component deformation is developed. Therefore, a partitioned approach of fluid structure interaction (FSI) simulations is used. The fluid field is simulated in OpenFOAM, whereas the structural simulations are conducted using Pam-Crash.
Technical Paper

FMCW Lidar Simulation with Ray Tracing and Standardized Interfaces

2024-07-02
2024-01-2977
In pursuit of safety validation of automated driving functions, efforts are being made to accompany real world test drives by test drives in virtual environments. To be able to transfer highly automated driving functions into a simulation, models of the vehicle’s perception sensors such as lidar, radar and camera are required. In addition to the classic pulsed time-of-flight (ToF) lidars, the growing availability of commercial frequency modulated continuous wave (FMCW) lidars sparks interest in the field of environment perception. This is due to advanced capabilities such as directly measuring the target’s relative radial velocity based on the Doppler effect. In this work, an FMCW lidar sensor simulation model is introduced, which is divided into the components of signal propagation and signal processing. The signal propagation is modeled by a ray tracing approach simulating the interaction of light waves with the environment.
Technical Paper

Impact of AdBlue Composition and Water Purity on Particle Number Increase

2024-07-02
2024-01-3012
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard.
Technical Paper

The Potential of a Hybrid Powertrain in Fuel Consumption and Thermal Drive-Off Element Load for Drive-Off Procedures Regarding Driving Styles

2023-04-11
2023-01-0900
Hybrid powertrains derive fuel consumption benefits from using an electric motor. These benefits are more significant in city traffic than on the highway and depend on the vehicle and the driving style. Further detailed research on the fuel consumption of hybrid powertrains during drive-off procedures is rarely found in the literature. Therefore, this study focuses on analyzing the potential of a mild-hybrid powertrain, in which the electric motor is integrated with the transmission (P2.5 concept). The fuel consumption and thermal load in the drive-off element, a wet frictional clutch, are analyzed for a city cycle with a focus on the first drive-off procedure for different driving styles. Particular attention is paid to the influence of different driving styles on the torque demands of the electric motor. These simulations are realized with a so-called backward-forward model. The backward-facing part enables following a given driving cycle without considering a driver model.
Technical Paper

Influence of Wheel Wake on Vehicle Aerodynamics: An Eddy-Resolving Simulation Study

2023-04-11
2023-01-0842
A computational study of the vehicle aerodynamics influenced by the wake of the rotating wheel taking into account a detailed rim geometry is presently performed. The car configuration corresponds to a full-scale (1:1) notchback configuration of the well-known ‘DrivAer’ vehicle model, Heft et al. [1]. The objective of the present work is to investigate the performance of some popular turbulence models in conjunction with different methods for handling the wheel rotation – rotating wall velocity, ‘multiple reference frame’ and ‘sliding grid algorithm’. The specific focus hereby is on a near-wall RANS eddy-viscosity model based on elliptic-relaxation, sensitized to resolve fluctuating turbulence by introducing a specifically modeled production term in the scale-supplying equation, motivated by the Scale-Adaptive Simulation approach (SAS, [2]), proposed by Krumbein et al. [3].
Technical Paper

Structural Flow Properties in IC Engine-Relevant Piston-Cylinder Configurations: An Eddy-Resolving Modelling Study

2022-03-29
2022-01-0399
The feasibility of a recently developed eddy-resolving model of turbulence, termed as Very LES (Large-Eddy-Simulation), was tested by simulating the flow dynamics in two moving piston-cylinder assemblies. The first configuration deals with the compression of a tumbling vortex generated during the intake process within a cylinder with the square cross-sectional area, for which the reference experimental database was made available by Borée et al. (2002). The second piston-cylinder assembly represents a realistic motored IC-Engine (Internal-Combustion Engine) with the multiple Y-shaped intake and outtake ducts in which the movable valves are accommodated. The boundary and operating conditions correspond to the experimental study performed by Baum et al. (2014). The VLES simulation model applied presently is a seamless eddy-resolving hybrid RANS/LES (Reynolds-Averaged Navier-Stokes / Large-eddy Simulation) model.
Journal Article

LES-Predicted Flow Patterning in a Newly-Designed Reference Test Sample with Relevance to IC Engine-Related Cooling Channels

2022-03-29
2022-01-0394
A test sample configuration with a circular cross-section has been conceptualized to reproduce all geometrically relevant flow-guided elements - straight segments, deflections, bifurcations, impingement regions, confluence - as they can also be found in the cooling systems of realistic Internal Combustion (IC) engines. This newly-designed reference test sample is termed as Water Spider Geometry (WSG), with the shape inspired by the flow guidance around an IC engine cylinder head. Computational investigations are carried out within the framework of a BMWi (German Federal Ministry for Economic Affairs and Energy) project by applying a well-resolved, highly comprehensive Large Eddy Simulation aiming at providing a meaningful assessment of the isothermal flow topology within the WSG. The basis forms a fully-hexahedral, block-structured grid arrangement comprising 290 million cells with the results considered to be a reference solution for further investigations.
Technical Paper

CO2 Neutral Fuels in Series Engines - Demonstration of the Potential of OME with Regard to Efficiency and Ultra-Low Emissions

2021-09-05
2021-24-0061
To meet the targets of the European Green Deal, CO2 emissions in the transport sector must be eliminated by 2050. To achieve these goals, it is not enough just to increase the powertrain efficiency. Regeneratively produced synthetic fuels offer the opportunity to be part of the solution to these challenges, due to their high energy density and wide range of applications. One representative of synthetic diesel fuels is oxymethylene ether (OME), which, in addition to its potential regenerative production process, is characterized by an almost soot-free combustion. Previous studies have demonstrated the feasibility of OME operation in a series engine. However, due to the limited amount of fuel that can be injected into the combustion chamber by series components, the potential in terms of efficiency could not be exploited.
Technical Paper

A Simulation Method for the Calculation of Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0226
The automotive industry uses supercharging in combination with various EGR strategies to meet the increasing demand for Diesel engines with high efficiency and low engine emissions. The charge air is heated by the EGR and the compression in the turbocharger to such an extent that high NOx emissions and a reduction in engine performance occurs. For this reason, the charge air cooler cools down the charge air before it enters the air intake manifold. In case of low pressure EGR, the charge air possesses a high moisture content and under certain operating conditions an accumulation of condensate takes place within the charge air cooler. During demanding engine loads, the condensate is entrained from the charge air cooler into the combustion chamber, resulting in misfiring or severe engine damage.
Journal Article

Experimental Investigation of the Pressure Drop during Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0202
This paper investigates the pressure drop with and without condensation inside a charge air cooler. The background to this investigation is the fact that the stored condensate in charge air coolers can be torn into the combustion chamber during different driving states. This may result in misfiring or in the worst-case lead to an engine failure. In order to prevent or reduce the accumulated condensate inside charge air coolers, a better understanding of the detailed physics of this process is required. To this end, one single channel of the charge air side is investigated in detail by using an experimental setup that was built to reproduce the operating conditions leading to condensation. First, measurements of the pressure drop without condensation are conducted and a good agreement with experimental data of a comparable heat exchanger reported in Kays and London [1] is shown.
Technical Paper

Numerical Investigation of Tonal Noise at Automotive Side Mirrors due to Aeroacoustic Feedback

2020-09-30
2020-01-1514
This paper describes the possibility to resolve aeroacoustic feedback with a commercial 2nd/3rd order finite volume CFD code [1]. After a first comparison to a NACA 0012 test case, tonal noise components of a realistic automotive side view mirror are validated with in-house wind tunnel measurements. A zonal RANS/LES approach is used to ensure a realistic flow around the exterior side mirror mounted on a Mercedes-Benz passenger car. The provided compressible large eddy simulations are using non-reflecting boundary conditions in combination with a sponge zone approach to reduce hydrodynamic fluctuations and are in great accordance to measurements. The possibility of localizing and investigating the underlying feedback mechanism enables the chance for a targeted design of different appropriate remedies, which are finally confirmed by means of experimental comparison.
Journal Article

Injection Strategy and EGR Optimization on a Viscosity-Improved Vegetable Oil Blend Suitable for Modern Compression Ignition Engines

2020-09-15
2020-01-2141
To comply with the ambitious CO2 targets of the European Union, greenhouse gas emissions from the transport sector should be eliminated by 2050. Incremental powertrain improvement and electrification are only a part of the solution and need to be supplemented by carbon-neutral fuels. Due to the high technology readiness level, biofuels offer a short-term decarbonization measure. The high process energy demand for transesterification or hydrotreating however, hinders the well-to-wheel CO2 reduction potential of current market biodiesels. An often-raised, economically and energetically feasible alternative is to use unprocessed oils with viscosity and cold-properties improvers instead. The present work investigates the suitability of one such biofuel (PlantanolTM) for advanced common rail engines operating in a partially premixed compression ignition mode. Preliminary investigations are carried out on a Euro VIb light-duty car engine.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Technical Paper

Performance Improvement of an Asymmetric Twin Scroll Turbocharger Turbine through Secondary Flow Injection

2020-04-14
2020-01-1011
A powerful and efficient turbocharger turbine benefits the engine in many aspects, such as better transient response, lower NOx emissions and better fuel economy. The turbine performance can be further improved by employing secondary flow injection through an injector over the shroud section. A secondary flow injection system can be integrated with a conventional turbine without affecting its original design parameters, including the rotor, volute, and back disk. In this study, a secondary flow injection system has been developed to fit for an asymmetric twin-scroll turbocharger turbine, which was designed for a 6-cylinder heavy-duty diesel engine, aiming at improving the vehicle’s performance at 1100 rpm under full-loading conditions. The shape of the flow injector is similar to a single-entry volute but can produce the flow angle in both circumferential and meridional directions when the flow leaves the injector and enters the shroud cavity.
Journal Article

Optimization of an Asymmetric Twin Scroll Volute Turbine under Pulsating Engine Boundary Conditions

2020-04-14
2020-01-0914
Future CO2 emission legislation requires the internal combustion engine to become more efficient than ever. Of great importance is the boosting system enabling down-sizing and down-speeding. However, the thermodynamic coupling of a reciprocating internal combustion engine and a turbocharger poses a great challenge to the turbine as pulsating admission conditions are imposed onto the turbocharger turbine. This paper presents a novel approach to a turbocharger turbine development process and outlines this process using the example of an asymmetric twin scroll turbocharger applied to a heavy duty truck engine application. In a first step, relevant operating points are defined taking into account fuel consumption on reference routes for the target application. These operation points are transferred into transient boundary conditions imposed on the turbine.
Technical Paper

Imaging and Simulation of Oil Transport Phenomena in the Upper Piston Skirt Region

2019-12-19
2019-01-2359
The oil transport phenomena in the chamfer beneath the oil control ring of a piston in a motored engine were investigated with a combined experimental-numerical approach. High-speed laser-induced fluorescence was used to visualize the oil distribution crank-angle-resolved on both thrust side and anti-thrust side of an optically accessible single cylinder engine. Corresponding three-dimensional volume-of-fluid CFD simulations were calibrated with the experiment and then utilized to analyze the cross sectional flows in the chamfer. Phenomena triggered by inertial forces and the lateral piston motion, e.g. oil transport from the piston to the liner (bridging) and the formation of a circular flow in the chamfer, are described in detail.
Technical Paper

Possibilities of Wall Heat Transfer Measurements at a Supercharged Euro VI Heavy-Duty Diesel Engine with High EGR-Rates, an In-Cylinder Peak Pressure of 250 Bar and an Injection Pressure up to 2500 Bar

2019-09-09
2019-24-0171
A raise of efficiency is the strongest selling point concerning the total cost of ownership (TCO), especially for commercial vehicles (CV). Accompanied by legislations, with contradictive development demands, satisfying solutions have to be found. The analysis of energy losses in modern engines shows three influencing parameters. Wall heat transfer (WHT) losses are awarded with the highest optimization potential. Critical for the occurrence of these losses is the WHT, which can be described by representing coefficients. To reduce WHT accompanying losses a decrease of energy transfer between combustion gas and combustion chamber wall is necessary. A measurement of heat fluxes is necessary to determine the WHT relations of the combustion chamber in an engine. As this has not been done for a Heavy-Duty (HD) engine, with peak pressures up to 250 bar, an increased in-cylinder turbulence and high exhaust gas recirculation (EGR)-rates before, it is presented in the following.
Technical Paper

Material Properties of Granular Ice Layers Characterized Using a Rigid-Body-Penetration Method: Experiments and Modeling

2019-06-10
2019-01-2034
Accretion and shedding of ice layers is a serious problem for various engineering applications. In particular, ice layers growing due to ice crystal impingement on warm parts of an aircraft jet engine pose a severe hazard since they seriously affect safe operation of an aircraft. The material properties, and in the first place the strength of an ice layer, are crucial for the mechanisms leading to, and taking place during, both accretion and shedding of an ice layer. In the present study, the apparent yield strength of dry granular ice layers is examined employing a novel rigid-body-penetration approach. Dynamic projectile penetration into granular ice layers of varying porosity and ice grain size is experimentally investigated for different projectile impact velocities using a high-speed video system and post-processing of the captured video data.
Technical Paper

How to Model Real-World Driving Behavior? Probability-Based Driver Model for Energy Analyses

2019-04-02
2019-01-0511
A wide variety of applications such as driver assistant and energy management systems are researched and developed in virtual test environments. The safe testing of the applications in early stages is based on parameterizable and reproducible simulations of different driving scenarios. One possibility is modeling the microscopic driving behavior to simulate the longitudinal vehicle dynamics of individual vehicles. The currently used driver models are characterized by a conflict regarding comprehensibility, accuracy and calibration effort. Due to the importance for further analyses this conflict of interests is addressed by the presentation of a new microscopic driver model in this paper. The proposed driver model stores measured driving behaviors with its statistical distributions in maps. Thereby, the driving task is divided into free flow, braking in front of stops and following vehicles ahead. This makes it possible to display the driving behavior in its entirety.
X