Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Cold Start Performance of Sustainable Oxygenated Spark Ignition Fuels

2023-09-29
2023-32-0166
The objective of this study was to reduce pollutant emissions during cold start conditions in a spark-ignited direct injection engine, by exploring the potential of oxygenated fuels. With their high oxygen content and lack of direct C-C bonds, they effectively reduce particle number (PN) and NOx emissions under normal conditions. Methanol was chosen due to its wide availability. As methanol is toxic to humans and associated with cold-start issues, a second promising synthetic fuel was selected to be benchmarked against gasoline, comprising 65 vol% of dimethyl carbonate and 35 vol% of methyl formate (C65F5). Currently, there is a lack of detailed investigations on the cold start performance for both oxygenated fuels utilizing today’s injector capabilities. Spray measurements were caried out in a constant volume chamber to assess the spray of C65F35. Reduced fuel temperature increased spray-penetration length and compromised fast vaporization.
Technical Paper

Applications of an Advanced Multiple Injection Calibration Strategy to Address Future Emission Legislation Challenges

2023-08-28
2023-24-0081
A novel algorithm-based approach is employed in this publication to calculate multiple direct injection patterns for spark ignition engines. The algorithm is verified by investigating the combustion and emission behavior of a single-cylinder research engine. State-of-the-art standard exhaust gas analyzers, a particle counter and an additional FTIR analyzer enable in-depth investigation of engine exhaust gas composition. With the upcoming worldwide pollutant emission targets, the emission limits will be reduced while the test procedures’ requirements to the engine increase. Special attention to the engine-out emissions must be paid during cold-start, during which the aftertreatment system lacks sufficient pollutant emission conversion efficiency. With advanced injection control, the engine-out emissions can be reduced and exhaust aftertreatment heat-up can be accelerated.
Technical Paper

Highly Efficient and Clean Combustion Engine for Synthetic Fuels

2023-04-11
2023-01-0223
This paper provides an overview of possible engine design optimizations by utilizing highly knock-resistant potential greenhouse gas (GHG) neutral synthetic fuels. Historically the internal combustion engine was tailored to and highly optimized for fossil fuels. For future engine generations one of the main objectives is to achieve GHG neutrality. This means that either carbon-free fuels such as hydrogen or potential greenhouse gas neutral fuels are utilized. The properties of hydrogen make its use challenging for mobile application as it is very diffusive, not liquid under standard temperature/pressure and has a low volumetric energy density. C1-based oxygenated fuels such as methanol (MeOH), dimethyl carbonate (DMC) and methyl formate (MeFo) have properties like conventional gasoline but offer various advantages. Firstly, these fuels can be produced with renewable energy and carbon capture technologies to be GHG neutral.
Technical Paper

Algorithm-Calculated Multiple Injection Patterns to Meet Future Requirements to Direct-Injection Spark Ignited Engines

2022-08-30
2022-01-1068
Future emission regulations require further development for internal combustion engines operating on gasoline. To comply with such regulations and simultaneously improve fuel efficiency, major development trends are found in reduced displacements, increased compression ratios and turbocharging. To counteract such engines’ increased tendencies to knocking combustion, direct fuel injection systems are necessarily applied. Compared to standard port fuel injection, direct injection systems cause increased particle emissions. State-of-the-art magnet-driven gasoline direct injectors are capable of realizing various injection events of small injected mass per event and short dwell time between one another. Thereby, they facilitate multiple injection strategies, able to overcome the drawbacks of direct injection systems in relation to exhaust emissions. However, the full potential of multiple injection strategies is not yet taken advantage of.
Technical Paper

Adaptation and Engine Validation of an FTIR Exhaust Gas Analysis Method for C1-Based Potential GHG-Neutral Synthetic Fuels/Gasoline-Blends Containing Dimethyl Carbonate and Methyl Formate

2022-03-29
2022-01-0569
The European Commission has released strict emission regulations for passenger cars in the past decade in order to improve air quality in cities and limit harmful emission exposure to humans. In the near future, even stricter regulations containing more realistic/demanding driving scenarios and covering more exhaust gas components are expected to be released. Passenger cars fueled with gasoline are one contributor to unhealthy air conditions, due to the fact that gasoline engines emit harmful air pollutants. One option to minimize harmful emissions would be to utilize specifically tailored, low emission synthetic fuels or fuel blends in internal combustion engines. Methyl formate and dimethyl carbonate are two promising candidates to replace or substitute gasoline, which in previous studies have proven to significantly decrease harmful pollutants.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
Technical Paper

Review of Potential CO2-Neutral Fuels in Passenger Cars in Context of a Possible Future Hybrid Powertrain

2021-09-21
2021-01-1229
To minimize the impact of global warming worldwide, net greenhouse-gas (GHG) emissions have to be reduced. The transportation sector is one main contributor to overall greenhouse gas emissions due to the fact that most of the current propulsion systems rely on fossil fuels. The gasoline engine powertrain is the most used system for passenger vehicles in the EU and worldwide. Besides emitting GHG, gasoline driven cars emit harmful pollutants, which can cause health issues for humans. Hybrid powertrains provide an available short-term solution to reduce fuel consumption and thus overall emissions. Therefore, an overview of the currently available technology and methodology of hybrid cars is provided in this paper as well as an overview of the performance of current HEV cars in real world testing. From the testing, it can be concluded that despite reducing harmful emissions, hybrid vehicles still emit pollutants and GHG when fueled with conventional gasoline.
Journal Article

Potential Analysis of a DMC/MeFo Mixture in a DISI Single and Multi-Cylinder Light Vehicle Gasoline Engine

2021-04-06
2021-01-0561
In this study a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) was used as a synthetic gasoline replacement. These synthetic fuels offer CO2-neutral mobility if the fuels are produced in a closed CO2-cycle and they reduce harmful emissions like particulates and NOX. For base potential investigations, a single-cylinder research engine (SCE) was used. An in-depth analysis of real driving cycles in a series 4-cylinder engine (4CE) confirmed the high potential for emission reduction as well as efficiency benefits. Beside the benefit of lower exhaust emissions, especially NOX and particle number (PN) emissions, some additional potential was observed in the SCE. During a start of injection (SOI) variation it could be detected that a late SOI of DMC/MeFo has less influence on combustion stability and ignitability. With this widened range for the SOI the engine application can be improved for example by catalyst heating or stratified mode.
X