Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

A Special User Shell Element for Coarse Mesh and High-Fidelity Fatigue Modeling of Spot-Welded Structures

2024-04-09
2024-01-2254
A special spot weld element (SWE) is presented for simplified representation of spot joints in complex structures for structural durability evaluation using the mesh-insensitive structural stress method. The SWE is formulated using rigorous linear four-node Mindlin shell elements with consideration of weld region kinematic constraints and force/moments equilibrium conditions. The SWEs are capable of capturing all major deformation modes around weld region such that rather coarse finite element mesh can be used in durability modeling of complex vehicle structures without losing any accuracy. With the SWEs, all relevant traction structural stress components around a spot weld nugget can be fully captured in a mesh-insensitive manner for evaluation of multiaxial fatigue failure.
Technical Paper

Design and Simulation of Battery Enclosure for an Electric Vehicle Application

2024-04-09
2024-01-2738
Making a sturdy battery box or enclosure is one of the many challenging issues that the expansion of electrification entails. Many characteristics of an effective battery housing contribute to the safety of passengers and shield the battery from the harsh environment created by vibrations and shocks due to varying road profiles in the vehicle. This results in stress and deformations of different degrees. There is a need to understand and develop a correlation between structural performance and lightweight design of battery enclosure as this can increase the range of the drive and the life cycle of a battery pack. This paper investigates the following points: I) A conceptualized CAD model of battery enclosure is developed to understand the design parameters such as utilization of different material for strength and structural changes for performance against vibration and strength.
Technical Paper

Comprehensive assessment of gasoline spray robustness for different plume arrangements

2024-04-09
2024-01-2620
Optimizing fuel injection spray is essential to comply with stringent future emission regulations for hybrid vehicles and internal combustion engine vehicles, and the spray characteristics and geometry must be robust for various engine operating conditions. This study presents experimental and numerical assessments of spray for lateral-mounted gasoline direct injection (GDI) sprays with different plume arrangements to analyze collapse characteristics, which can significantly deteriorate the geometry and characteristics of fuel sprays. Novel spray characterization methods are applied to analyze complex spray collapse behaviors using LED-based diffusive back-illuminated extinction imaging (DBIEI) and 3D computed tomographic (CT) image reconstruction. High-fidelity computational fluid dynamics (CFD) simulations are performed to analyze the detailed spray characteristics besides experimental characterization.
Technical Paper

An Examination of Sensing Skins with Tailored Conductivity Distributions for Enhanced 2-D Surface Temperature Measurements Using Electrical Impedance Tomography (EIT)

2023-10-31
2023-01-1680
For 2D surface temperature monitoring applications, a variant of Electrical Impedance Tomography (EIT) was evaluated computationally in this study. Literature examples of poor sensor performance in the center of the 2D domains away from the side electrodes motivated these efforts which seek to overcome some of the previously noted shortcomings. In particular, the use of ‘sensing skins’ with novel tailored baseline conductivities was examined using the EIDORS package for EIT. It was found that the best approach for detecting a temperature hot spot depends on several factors such as the current injection (stimulation) patterns, the measurement patterns, and the reconstruction algorithms. For well-performing combinations of these factors, customized baseline conductivities were assessed and compared to the baseline uniform conductivity.
Technical Paper

Tooth Mesh Characterization of Spur Gear Pairs with Surface Pitting Damage

2023-04-11
2023-01-0458
A finite element/contact mechanics (FE/CM) method is used to determine the tooth contact forces, static transmission error, and tooth pair stiffnesses for spur gear pairs that have pitting damage. The pitting damage prevents portions of the tooth surface from carrying load, which results in meaningfully different contact pressure distribution on the gear teeth and deformations at the mesh. Pits of elliptical shape are investigated. Parametric analyses are used to investigate the effect of pit width (along the tooth face) and height (along the tooth profile) on the gear tooth mesh interface. Pitting damage increases static transmission error and decreases tooth pair stiffness. Tooth contact forces differ only in the portions of the mesh cycle when multiple pairs of teeth are in contact and share the transmitted load. Pitting damage does not change the loads when only a single pair of teeth are in contact.
Technical Paper

Effects of Injector Included Angle on Low-Load Low Temperature Gasoline Combustion Using LES

2023-04-11
2023-01-0270
A novel advanced combustion strategy that employs the kinetically controlled compression ignition of gasoline whose autoignition is sensitive to fuel concentration is termed Low Temperature Gasoline Combustion. The LTGC method can achieve high thermal efficiency with a commercially available fuel while generating ultra-low soot and NOx emissions relative to the conventional combustion modes. At high loads, a double direct injection (D-DI) strategy is used where the first injection generates a background premixed charge while a second compression stroke injection controls the level of fuel stratification on a cycle-to-cycle basis to manage the heat release rates. With lower loads, this combustion performance of this D-DI strategy decreases as the background charge becomes increasingly lean. Instead, a single direct injection (S-DI) is used at lower loads to maintain an adequate combustion efficiency.
Technical Paper

Finite Element Analyses of Macroscopic Stress-Strain Relations and Failure Modes for Tensile Tests of Additively Manufactured AlSi10Mg with Consideration of Melt Pool Microstructures and Pores

2023-04-11
2023-01-0955
Finite element (FE) analyses of macroscopic stress-strain relations and failure modes for tensile tests of additively manufactured (AM) AlSi10Mg in different loading directions with respect to the building direction are conducted with consideration of melt pool (MP) microstructures and pores. The material constitutive relations in different orientations of AM AlSi10Mg are first obtained from fitting the experimental tensile engineering stress-strain curves by conducting axisymmetric FE analyses of round bar tensile specimens. Four representative volume elements (RVEs) with MP microstructures with and without pores are identified and selected based on the micrographs of the longitudinal cross-sections of the vertical and horizontal tensile specimens. Two-dimensional plane stress elastic-plastic FE analyses of the RVEs subjected to uniaxial tension are then conducted.
Technical Paper

Effect of Spray Collapse on Mixture Preparation and Combustion Characteristics of a Spark-Ignition Heavy-Duty Diesel Optical Engine Fueled with Direct-Injected Liquefied Petroleum Gas (LPG)

2023-04-11
2023-01-0323
Liquefied Petroleum Gas (LPG), as a common alternative fuel for internal combustion engines is currently widespread in use for fleet vehicles. However, a current majority of the LPG-fueled engines, uses port-fuel injection that offers lower power density when compared to a gasoline engine of equivalent displacement volume. This is due to the lower molecular weight and higher volatility of LPG components that displaces more air in the intake charge due to the larger volume occupied by the gaseous fuel. LPG direct-injection during the closed-valve portion of the cycle can avoid displacement of intake air and can thereby help achieve comparable gasoline-engine power densities. However, under certain engine operating conditions, direct-injection sprays can collapse and lead to sub-optimal fuel-air mixing, wall-wetting, incomplete combustion, and increased pollutant emissions.
Technical Paper

Characterization of High-Tumble Flow Effects on Early Injection for a Lean-Burn Gasoline Engine

2023-04-11
2023-01-0238
The influence of early induction stroke direct injection on late-cycle flows was investigated for a lean-burn, high-tumble, gasoline engine. The engine features side-mounted injection and was operated at a moderate load (8.5 bar brake mean effective pressure) and engine speed (2000 revolutions per minute) condition representative of a significant portion of the duty cycle for a hybridized powertrain system. Thermodynamic engine tests were used to evaluate cam phasing, injection schedule, and ignition timing such that an optimal balance of acceptable fuel economy, combustion stability, and engine-out nitrogen oxide (NOx) emissions was achieved. A single cylinder of the 4-cylinder thermodynamic engine was outfitted with an endoscope that enabled direct imaging of the spark discharge and early flame development.
Journal Article

Optical Investigation of Mixture Formation in a Hydrogen-Fueled Heavy-Duty Engine with Direct-Injection

2023-04-11
2023-01-0240
Mixture formation in a hydrogen-fueled heavy-duty engine with direct injection and a nearly-quiescent top-hat combustion chamber was investigated using laser-induced fluorescence imaging, with 1,4-difluorobenzene serving as a fluorescent tracer seeded into hydrogen. The engine was motored at 1200 rpm, 1.0 bar intake pressure, and 335 K intake temperature. An outward opening medium-pressure hollow-cone injector was operated at two different injection pressures and five different injection timings from early injection during the intake stroke to late injection towards the end of compression stroke. Fuel fumigation upstream of the intake provided a well-mixed reference case for image calibration. This paper presents the evolution of in-cylinder equivalence ratio distribution evaluated during the injection event itself for the cylinder-axis plane and during the compression stroke at different positions of the light sheet within the swirl plane.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Journal Article

Development and Validation of an EHN Mechanism for Fundamental and Applied Chemistry Studies

2022-03-29
2022-01-0455
Autoignition enhancing additives have been used for years to enhance the ignition quality of diesel fuel, with 2-ethylhexyl nitrate (EHN) being the most common additive. EHN also enhances the autoignition reactivity of gasoline, which has advantages for some low-temperature combustion techniques, such as Sandia’s Low-Temperature Gasoline Combustion (LTGC) with Additive-Mixing Fuel Injection (AMFI). LTGC-AMFI is a new high-efficiency and low-emissions engine combustion process based on supplying a small, variable amount of EHN into the fuel for better engine operation and control. However, the mechanism by which EHN interacts with the fuel remains unclear. In this work, a chemical-kinetic mechanism for EHN was developed and implemented in a detailed mechanism for gasoline fuels. The combined mechanism was validated against shock-tube experiments with EHN-doped n-heptane and HCCI engine data for EHN-doped regular E10 gasoline. Simulations showed a very good match with experiments.
Technical Paper

Visualization of Frequency Response Using Nyquist Plots

2022-03-29
2022-01-0753
Nyquist plots are a classical means to visualize a complex vibration frequency response function. By graphing the real and imaginary parts of the response, the dynamic behavior in the vicinity of resonances is emphasized. This allows insight into how modes are coupling, and also provides a means to separate the modes. Mathematical models such as Nyquist analysis are often embedded in frequency analysis hardware. While this speeds data collection, it also removes this visually intuitive tool from the engineer’s consciousness. The behavior of a single degree of freedom system will be shown to be well described by a circle on its Nyquist plot. This observation allows simple visual examination of the response of a continuous system, and the determination of quantities such as modal natural frequencies, damping factors, and modes shapes. Vibration test data from an auto rickshaw chassis are used as an example application.
Journal Article

A New Pathway for Prediction of Gasoline Sprays using Machine-Learning Algorithms

2022-03-29
2022-01-0492
The fuel spray process is of utmost importance to internal combustion engine design as it dominates engine performance and emissions characteristics. While designers rely on computational fluid dynamics (CFD) modeling for understanding of the air-fuel mixing process, there are recognized shortcomings in current CFD spray predictions, particularly under super-critical or flash-boiling conditions. In contrast, time-resolved optical spray experiments have now produced datasets for the three-dimensional liquid distribution for a wide range of operating conditions and fuels. By utilizing such a large amount of detailed experimental data, the machine learning (ML) techniques have opened new pathways for the prediction of fuel sprays under various engine-like conditions.
Journal Article

A Review of Current Understanding of the Underlying Physics Governing the Interaction, Ignition and Combustion Dynamics of Multiple-Injections in Diesel Engines

2022-03-29
2022-01-0445
This work is a comprehensive technical review of existing literature and a synthesis of current understanding of the governing physics behind the interaction of multiple fuel injections, ignition, and combustion behavior of multiple-injections in diesel engines. Multiple-injection is a widely adopted operating strategy applied in modern compression-ignition engines, which involves various combinations of small pre-injections and post-injections of fuel before and after the main injection and splitting the main injection into multiple smaller injections. This strategy has been conclusively shown to improve fuel economy in diesel engines while achieving simultaneous NOX, soot, and combustion noise reduction - in addition to a reduction in the emissions of unburned hydrocarbons (UHC) and CO by preventing fuel wetting and flame quenching at the piston wall.
Journal Article

Damage-Induced Dynamic Tooth Contact Forces in Spur Gears with Root Cracks

2022-03-29
2022-01-0642
A finite element/contact mechanics formulation is used to analyze the dynamic tooth forces that arise from damage-induced vibrations in spur gear pairs. Tooth root crack damage of varying sizes are analyzed for a wide range of speeds that include resonant gear speeds. The added localized compliance from tooth root crack damage leads to a re-distribution of the forces on the individual gear teeth in mesh. At speeds away from resonance, smaller dynamic forces occur on the damaged tooth and larger dynamic forces occur on the tooth that engages immediately after it. These dynamic tooth contact forces cause additional transient dynamic response in the gear pair. For certain speeds and sufficiently large tooth root cracks, the damage-induced dynamic response causes large enough vibration that tooth contact loss nonlinearity occurs. For some speeds near resonance, the damage-induced vibrations cause teeth that normally lose contact to remain in contact due to vibration.
Technical Paper

Design and Analysis of an Acrylic Front of a Novel Mechanical Highway Billboard

2021-04-06
2021-01-0832
Billboards are an effective instrument of advertisement at areas with high traffic flow such as alongside highways. They provide information to drivers for food, fuel, lodging, attractions, etc. A novel mechanical billboard has been conceived recently which contains rolling tubes to alternate as many as twelve printed signs. It has the advantages of both flexibility and cost-effectiveness. A container is built to protect the mechanism from the weather elements. To allow the displayed messages to be visible, a transparent acrylic front is installed. Due to its mechanical properties, it is a challenging task in designing a functional acrylic front. A reinforcement is selected to counter the weak flexural rigidity of the front during winds. On the other hand, the reinforced acrylic front must maintain sufficient visibility.
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

The Study of the Effective Contact Area of Suction Cup

2021-04-06
2021-01-0298
As the industry moves further into the automotive age, the failure of the cup during the transportation of the parts during the assembly process is costly. Among them, the effective contact area of the suction cup could influence the significant availability of the pressure, which is necessary to investigate the truth. The essential objective for this research is trying to improve the effectiveness of the suction cups during gripers work in company’s industry. In this research, the real work condition is simulated by the experimental setup to find the influence of the effective contact area. In this paper, the proper methodology to measure the effective area by testing different size cups under different conditions is described. The results are verified by the digital image correlation (DIC) technique.
X