Refine Your Search

Topic

Author

Search Results

Technical Paper

Opportunities, Challenges and Requirements for Use of Blockchain in Unmanned Aircraft Systems

2023-09-05
2023-01-1504
Unmanned Aircraft Systems (UAS) have been growing over the past few years and will continue to grow at a faster pace in future. UAS faces many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain, defined as a distributed ledger technology for the enterprise that features immutability, traceability, automation, data privacy, and security, can help address some of these challenges. However, blockchain also has certain challenges and is still evolving. Hence it is essential to study on how blockchain can help UAS. G-31 technical committee of SAE International responsible for electronic transactions for aerospace has published AIR 7356 [1] entitled Opportunities, Challenges and Requirements for use of Blockchain in Unmanned Aircraft Systems Operating below 400ft above ground level for Commercial Use. This paper is a teaser for AIR 7356 [1] document.
Technical Paper

777X Control Surface Assembly Using Advanced Robotic Automation

2017-09-19
2017-01-2092
Fabrication and assembly of the majority of control surfaces for Boeing’s 777X airplane is completed at the Boeing Defense, Space and Security (BDS) site in St. Louis, Missouri. The former 777 airplane has been revamped to compete with affordability goals and contentious markets requiring cost-effective production technologies with high maturity and reliability. With tens of thousands of fasteners per shipset, the tasks of drilling, countersinking, hole inspection, and temporary fastener installation are automated. Additionally and wherever possible, blueprint fasteners are automatically installed. Initial production is supported by four (4) Electroimpact robotic systems embedded into a pulse-line production system requiring strategic processing and safeguarding solutions to manage several key layout, build and product flow constraints.
Journal Article

Integrated Ball-Screw Based Upset Process for Index Head Rivets Used in Wing Panel Assembly

2015-09-15
2015-01-2491
A new high speed forming process for fatigue rated index head rivets used in wing panel assembly using ball-screw based servo squeeze actuation has been developed. The new process is achieved using a combination of force and position control and is capable of forming to 40,000 lbs at rates of up to 200,000 lbs/second whilst holding the part location to within +/− 10 thousandths of an inch. Multi-axis riveting machines often have positioning axes that are also used for fastener upset. It is often the case that while a CNC is used for positioning control, another secondary controller is used to perform the fastener upset. In the new process, it has been possible to combine the control of the upset process with the machine CNC, thus eliminating any separate controllers. The fastener upset force profile is controlled throughout the forming of the rivet by using a closed loop force control system that has a load cell mounted directly behind the stringer side forming tool.
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Technical Paper

Development and Implementation of Sol-Gel Coatings for Aerospace Applications

2009-11-10
2009-01-3208
A family of water-based sol-gel coatings has been developed as an environmentally-friendly alternative to traditional aerospace finishing materials and processes. The sol-gel hybrid network is based on a reactive mixture of an organo-functionalized silane with a stabilized zirconium complex. Thin films of the material self-assemble on metal surfaces, resulting in a gradient coating that provides durable adhesion for paints, adhesives, and sealants. Use of the novel coating as a surface pretreatment for the exterior of commercial aircraft has enabled environmental, health, and safety benefits due to elimination of hexavalent chromium, and flight test and early fleet survey data support the laboratory observations that the sol gel coating reduces the occurrence of “rivet rash” adhesion failures. Modifications of the basic inorganic/organic hybrid network have yielded multifunctional coatings with promise for applications such as corrosion control and oxidation protection.
Technical Paper

Efficient Assembly Integration and Test (EAIT) Moves Theory to Practice at a System Level to Effect Lean Outcomes on the Shop Floor

2009-11-10
2009-01-3169
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
Technical Paper

Integrated Electrical System Testing and Modeling for Risk Mitigation

2008-11-11
2008-01-2897
International Space Station (ISS) Payload Engineering Integration (PEI) organization adopted the advanced computation and simulation technology to develop integrated electrical system models based on the test data of various sub-units. This system model was used end-to-end to mitigate system risk for the integrated Space Shuttle Pre-launch and Landing configurations. The Space Shuttle carries the Multi-Purpose Logistics Module (MPLM), a pressurize transportation carrier, and the Laboratory Freezer for ISS, a freezer rack for storage and transport of science experiments from/to the ISS, is carried inside the MPLM. An end-to-end electrical system model for Space Shuttle Pre-Launch and Landing configurations, including the MPLM and Freezer, provided vital information for integrated electrical testing and to assess Mission success. The Pre-Launch and Landing configurations have different power supplies and cables to provide the power for the MPLM and the Freezer.
Technical Paper

Universal Splice Machine

2007-09-17
2007-01-3782
There is an increasing demand in the aerospace industry for automated machinery that is portable, flexible and light. This paper will focus on a joint project between BROETJE-Automation and Boeing called the Universal Splice Machine (USM). The USM is a portable, flexible and lightweight automated drilling and fastening machine for longitudinal splices. The USM is the first machine of its kind that has the ability not only to drill holes without the need to deburr, (burrless drilling) but also to insert fasteners. The Multi Function End Effector (MFEE) runs on a rail system that is mounted directly on the fuselage using a vacuum cup system. Clamp up is achieved through the use of an advanced electromagnet. A control cart follows along next to the fuselage and includes an Automated Fastener Feeding System. This paper will show how this new advancement has the capabilities to fill gaps in aircraft production that automation has never reached before.
Technical Paper

Verification of Supply Chain Quality for Perishable Tools

2007-09-17
2007-01-3813
Increased emphasis on standardizing processes and controlling variability in production operations includes validating perishable tools used in daily operations. Even though dealing with reputable manufacturers, many factors including communication, custom specifications and personnel turnover can lead to the perpetuation of mistakes if errors are not discovered and corrective action implemented. However, inspection is costly and inspection costs far outweigh many item costs unless considering product defects. A beneficial balance may be obtained by employing statistical sampling techniques similar to ISO 2859 [1] to verify the quality of incoming tools.
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

Development of Metal-Matrix Nano-Composite Materials for Advanced Aerospace Fastener Technology

2006-09-12
2006-01-3154
This paper presents the results of development efforts relating to an advanced material processing technique, namely cryogenic milling, and its application to the processing of Al-7.5wt%Mg-0.2wt%N-20vol%SiC and Al 8wt%Ti-2wt%Ni nano-composite materials suitable for use in aerospace fastener applications. The effects of cryogenic milling in the material production are investigated via microstructural analysis. The advantages of cryogenic milling in the material production are presented with powder morphology and handling characteristics, and microstructural and nanostructural aspects. The resulting, very homogeneous material is discussed along with resulting mechanical properties, which are obtained through tension tests.
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

Analysis to Characterize Fresh vs. Aged Shuttle Orbiter Lithium Hydroxide Performance

2006-07-17
2006-01-2048
A recent endeavor has been undertaken to understand the performance of Shuttle Orbiter lithium hydroxide (LiOH) canisters used during STS-114. During this mission, the crew relied on both fresh LiOH and aged LiOH stored on the International Space Station (ISS). Due to the Space Shuttle being grounded after the Columbia accident, the canisters stored on ISS had passed the certified two-year shelf life and were considered expired. The focus of the analysis was to determine the performance of expired LiOH in relation to fresh LiOH and the accuracy of previous predictions1 regarding the performance of expired LiOH. Understanding the performance of expired LiOH is crucial in enabling the extension of the useful life of LiOH canisters. Extending the shelf life has ramifications not only in the current Shuttle program, but in regard to future exploration missions fulfilling the Vision for Space Exploration as well.
Technical Paper

International Space Station Nitrogen System Performance

2006-07-17
2006-01-2091
The Nitrogen System aboard the International Space Station (Station) continues to maintain Station total pressure and support several ongoing scientific and medical tasks. This paper addresses elevated leakage in the Nitrogen System, behavior during events such as nitrogen usage in other parts of the Station, and describes behavioral changes of the nitrogen Regulator/Relief Valve (regulator) since the activation of the Nitrogen System in 2001.
Technical Paper

ISS: On-Board ECLSS Maintenance Activities and Launch Logistics

2006-07-17
2006-01-2062
The ISS U. S. ECLSS contains replaceable component designs to facilitate maintenance. A replaceable component is referred to as an Orbital Replacement Unit (ORU). Total U. S. ECLSS maintenance events that have occurred over the five years (2001-2005) of operations are summarized. A more detailed description is provided for the ECLSS Remove and Replace (R&R) maintenance activities that have occurred during the last two years and the associated logistics that supported these activities. Maintenance activities have replaced failed or degraded ORU's by Corrective Maintenance (CM) and replaced spent expendable ORU's by Preventative Maintenance (PM). Corrective maintenance is performed only when necessary and often on relatively short notice. Preventative maintenance is planned in advance and is normally performed at a specified ORU service time. The paper also describes activities and successful efforts to increase the expendable ORU service life.
Technical Paper

Microbial Characterization of Internal Active Thermal Control System (IATCS) Hardware Surfaces after Five Years of Operation in the International Space Station

2006-07-17
2006-01-2157
A flex hose assembly containing aqueous coolant from the International Space Station (ISS) Internal Active Thermal Control System (IATCS) consisting of a 2 foot section of Teflon hose and quick disconnects (QDs) and a Special Performance Checkout Unit (SPCU) heat exchanger containing separate channels of IATCS coolant and iodinated water used to cool spacesuits and Extravehicular Mobility Units (EMUs) were returned for destructive analyses on Shuttle return to flight mission STS-114. The original aqueous IATCS coolant used in Node 1, the Laboratory Module, and the Airlock consisted of water, borate (pH buffer), phosphate (corrosion control), and silver sulfate (microbiological control) at a pH of 9.5 ± 0.5.
Technical Paper

ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project - 2006 Update

2006-07-17
2006-01-2161
The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered.
Technical Paper

System Software Safety Assessment Process for Certification of Commercial and Military Aircraft

2005-10-03
2005-01-3390
For the next 10 years new world-wide communication, navigation, and surveillance (CNS) requirements are being incrementally imposed upon military aircraft avionics, and upon the Air Traffic Control community, by the Aviation Administrations of most nations, including the FAA and the JAA. These requirements are the result of a decade of study by the United Nations' International Civil Aviation Organization (ICAO) to improve aviation safety and efficiency. In 2001 the USAF mandated compliance to the CNS requirements for its military aircraft, which is called Navigation Safety (NS) GATM by the USAF. By complying with these requirements, the military aircraft can maintain their ability to fly internationally without CNS restrictions. The FAA requires that flight software be assessed, developed and/or verified (proven) with a methodology recommended by the RTCA document called DO-178B for software based systems.
Technical Paper

Machining-Induced Residual Stress and Distortion

2005-10-03
2005-01-3317
Distortion and buckling of aluminum aerospace components can be caused by machining-induced residual stress or by residual stress induced earlier in material processing. This stress is characterized through layer removal experiments and measurements of surface location. This stress is correlated to two machining process parameters, which can be changed, in order to control distortion and buckling of machined metallic components. Experiments are presented which compare distortion of thin machined parts to distortion of chemically milled parts in order to uncouple material bulk stress from machining-induced stress.
Technical Paper

Electromagnetic Forming of Various Aircraft Components

2005-10-03
2005-01-3307
Electromagnetic forming (EMF) technology has been used lately for the joining and assembly of axisymmetric parts in the aerospace and automotive industries. A few case studies of compressive-type joining processes applied on both aluminum and titanium or stainless tubes for aerospace applications are presented. In the first case study, tests were conducted using 2024-T3 drawn tubes joined with a steel end fitting to form a torque tube using different forming variables including: the fitting geometry, material formability and forming power (KJ). The power setting and the fitting geometry were optimized to improve the fatigue life, torque off, and the axial load capability of the torque tube joints to drive the leading and trailing edge high-lift devices.
X