Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Technical Paper

Efficient Assembly Integration and Test (EAIT) Moves Theory to Practice at a System Level to Effect Lean Outcomes on the Shop Floor

2009-11-10
2009-01-3169
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

Microbial Characterization of Internal Active Thermal Control System (IATCS) Hardware Surfaces after Five Years of Operation in the International Space Station

2006-07-17
2006-01-2157
A flex hose assembly containing aqueous coolant from the International Space Station (ISS) Internal Active Thermal Control System (IATCS) consisting of a 2 foot section of Teflon hose and quick disconnects (QDs) and a Special Performance Checkout Unit (SPCU) heat exchanger containing separate channels of IATCS coolant and iodinated water used to cool spacesuits and Extravehicular Mobility Units (EMUs) were returned for destructive analyses on Shuttle return to flight mission STS-114. The original aqueous IATCS coolant used in Node 1, the Laboratory Module, and the Airlock consisted of water, borate (pH buffer), phosphate (corrosion control), and silver sulfate (microbiological control) at a pH of 9.5 ± 0.5.
Technical Paper

ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project - 2006 Update

2006-07-17
2006-01-2161
The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered.
Technical Paper

ESM Analysis of COTS Laundry Systems for Space Missions

2002-07-15
2002-01-2518
Clothing supply has been examined for historical, current, and planned missions. For STS, crew clothing is stowed on the orbiter and returned to JSC for refurbishment. On Mir, clothing was supplied and then disposed of on Progress for incineration on re-entry. For ISS, the Russian laundry and 75% of the US laundry is placed on Progress for destructive re-entry. The rest of the US laundry is stowed in mesh bags and returned to earth in the Multi Purpose Logistics Module (MPLM) or in the STS middeck. For previous missions, clothing was supplied and thrown away. Supplying clothing without washing dirty clothing will be costly for long-duration missions. An on-board laundry system may reduce overall mission costs, as shown in previous, less accurate, metric studies. Some design and development of flight hardware laundry systems has been completed, such as the SBIR Phase I and Phase II study performed by UMPQUA Research Company for JSC in 1993.
Technical Paper

Assessment of Lithium Hydroxide Conservation Via International Space Station Control of Orbiter Carbon Dioxide

2002-07-15
2002-01-2271
In order to conserve mass and volume, it was proposed that the International Space Station (ISS) control the level of carbon dioxide (CO2) in the Space Shuttle Orbiter while the Orbiter is docked to the ISS. If successful, this would greatly reduce the number of lithium hydroxide (LiOH) canisters required for each ISS-related Orbiter mission. Because of the impact on the Orbiter Environmental Control and Life Support Subsystem (ECLSS), as well as on the Orbiter flight manifest, a Space Shuttle Program (SSP) analysis was necessary. STS-108 (ISS UF1) pre-flight analysis using the Personal Computer Thermal Analyzer Program (PCTAP) predicted that the ISS would be able to control the level of CO2 in the Orbiter (and throughout the stack) under nominal conditions with no supplemental LiOH required. This analysis assumed that the Carbon Dioxide Removal Assembly (CDRA) located in the U.S.
Technical Paper

An Integrated Human Modeling Simulation Process for the International Space Station, Intra-Vehicular Activity

2001-09-11
2001-01-3035
Defining a process for integrating human modeling within the design and verification activities of the International Space Station (ISS) has proven to be as important as the simulations themselves. The process developed (1) ensured configuration management of the required digital mockups, (2) provided consistent methodology for simulating and analyzing human tasks and hardware layout, (3) facilitated an efficient method of communicating design requirements and relaying satisfaction of contract requirements, and (4) provided substantial cost savings by reducing the amount of late redesign and expensive mockup tests. Human simulation is frequently the last step in the design process. Consequently, the influence it has on product design is minimal and oftentimes being used as a post-design verification tool.
Technical Paper

Flexible Assembly System Implementation

1999-10-06
1999-01-3447
This paper covers issues related to the installation, testing, and production implementation of a large-scale automated wing drilling/fastener installation system. Emphasis is placed on describing the production process, foundation requirements, axes alignment, calibration, testing and implementation. Description will include key hardware features such as the multi-function end effector and spindle end effector. The objective is to convey the complexity of implementing this system as well as reviewing the lessons learned from this experience.
Technical Paper

Integrated Air Interchange System Performance for Early Internatonal Space Station Assembly Missions

1998-07-13
981588
A multi-element fixed control volume integrated air interchange system performance computer model has been developed and upgraded for the evaluation/assessment of atmospheric characteristics inside the crew compartments of the mated Orbiter and International Space Station (ISS). In order to ensure a safe, comfortable, and habitable environment for all the astronauts during the Orbiter/ISS docked period, this model was utilized to conduct the analysis for supporting the early ISS assembly missions. Two ISS assembly missions #2A and #4A were selected and analyzed.
Technical Paper

International Space Station Temperature and Humidity Control Subassembly Hardware, Control and Performance Description

1998-07-13
981618
The temperature and humidity of the air within the habitable areas of the International Space Station are controlled by a set of hardware and software collectively referred to as the Temperature and Humidity Control (THC) subassembly. This subassembly 1) controls the temperature of the cabin air based on a crew selected temperature, 2) maintains humidity within defined limits, and 3) generates a ventilation air flow which circulates through the cabin. This paper provides descriptions of the components of the THC subassembly, their performance ranges, and the control approach of the hardware. In addition, the solutions of the design challenges of maintaining a maximum case radiated noise level of NC 45, controlling the cabin air temperature to within ±2°F of a setpoint temperature, and providing a means of controlling microbial growth on the heat exchanger surfaces are described.
Technical Paper

Virtual Laboratory (VLAB) Concept Applied in a Life Science Laboratory

1998-07-13
981792
As pieces of the International Space Station (ISS) enter their test phase, access to information and data from the test laboratories must be made immediately available to analysts, managers, and customers. The Virtual Laboratory (VLAB) concept provides remote access to laboratory test data and other information, indirectly as archived data or directly as real-time data off the test bed. We applied VLAB to a life support system hardware test (the Trace Contaminant Control System, TCCS) in the Life Support Technology Center (LSTC). In this paper we describe the VLAB concept in the context of the TCCS hardware test.
X