Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Best Practices in Establishing Business Case for Implementing Blockchain Solution in Aerospace

2022-03-08
2022-01-0002
The aircraft asset life cycle processes are rapidly being digitalized. Many novel technologies enabled processes of recording these electronic transactions are being emerged. One such technology for recording electronic transactions securely is Blockchain, defined as distributed ledger technologies which includes enterprise blockchain. Blockchain is not widely used in the aerospace industry due to lack of technical understanding and questions about its benefits. Assessment and establishment of business case for implementing blockchain based solution is needed. The aerospace industry is very conservative when it comes to technology adoption and hence it is difficult to change legacy processes. Additionally, the industry is very fragmented. The technology is advancing at a faster rate and applies across geographies under various regulatory oversight which makes blockchain based solution implementation challenging.
Technical Paper

Use of Cavitation Abrasive Surface Finishing to Improve the Fatigue Properties of Additive Manufactured Titanium Alloy Ti6Al4V

2021-03-02
2021-01-0024
To improve the fatigue properties of additive manufactured (AM) titanium alloy Ti6Al4V, cavitation abrasive surface finishing (CASF) was proposed. With CASF, a high-speed water jet with cavitation, i.e. a cavitating jet, was injected into a water-filled chamber, to which abrasives were added. Abrasives accelerated by the jet created a smooth surface by removing un-melted particles on the surface. Simultaneously, cavitation impacts induced by the jet introduced compressive residual stress and work hardening into the surface, similar to cavitation peening. In this study, to demonstrate the improvement of the fatigue properties of AM Ti6Al4V owing to CASF, Ti6Al4V specimens manufactured through direct metal laser sintering (DMLS) and electron beam melting (EBM) were treated using CASF and cavitation peening, and tested using a plane bending fatigue test.
Journal Article

Digital Data Standards in Aircraft Asset Lifecycle: Current Status and Future Needs

2021-03-02
2021-01-0035
The aerospace ecosystem is a complex system of systems comprising of many stakeholders in exchanging technical, design, development, certification, operational, and maintenance data across the different lifecycle stages of an aircraft from concept, engineering, manufacturing, operations, and maintenance to its disposal. Many standards have been developed to standardize and improve the effectiveness, efficiency, and security of the data transfer processes in the aerospace ecosystem. There are still challenges in data transfer due to the lack of standards in certain areas and lack of awareness and implementation of some standards. G-31 standards committee of SAE International has conducted a study on the available digital data standards in aircraft asset life cycle to understand the current and future landscapes of the needed digital data standards and identify gaps. This technical paper presents the study conducted by the G-31 technical committee.
Technical Paper

Expanded Accommodation Technique with Application to Maintenance Environment

2011-04-12
2011-01-0521
This paper presents a PC based mathematical and rapid prototyping technique for anthropometric accommodation in a maintenance environment using the principle of simulation based design. The developed technique is capable of analyzing anthropometric data using multivariate (Principal component Analysis) approach to describe the body size variability of any given population. A number of body size representative cases are established which, when used properly within the constraints of the maintenance environments, will ensure the accommodation of a desired percentage of a population. This technique evaluates the percentage accommodation of a given population for the environment using the specific manikin cases as boundary conditions. In the case where any member of a maintenance crew cannot be accommodated, the technique has the capability of informing the designer of the environment why the member(s) is/are not accommodated.
Technical Paper

Ejection Seat Cushions Static Evaluation for Three Different Installation Rail Angles

2011-04-12
2011-01-0806
Jet fighter missions have been known to last extended period of time. The need for a comfortable and safe seat has become paramount considering that fact that uncomfortable seats can lead to numerous health issues. Several health effects like numbness, pressure sore, low back pain, and vein thrombosis have been associated with protracted sitting. The cushion, and of late the installation rail angle are the only components of the ejection seat system that can be modified to reduce these adverse effects. A comprehensive static comfort evaluation study for ejection seats was conducted. It provides comparison between a variety of operational and prototype cushions (baseline cushion, honeycomb and air-cushion) and three different installation rail angles (14°, 18°, and 22°). Three operational cockpit environment mockups with adjustable installation rail angle were built. Ten volunteer subjects, six females and four males, ages 19 to 35, participated in the seat comfort evaluation.
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Journal Article

Characterization of the Tau Parallel Kinematic Machine for Aerospace Application

2009-11-10
2009-01-3222
A consortium of interested parties has conducted an experimental characterization of two Tau parallel kinematic machines which were built as a part of the EU-funded project, SMErobot1. Characteristics such as machine stiffness, work envelope, repeatability and accuracy were considered. This paper will present a brief history of the Tau parallel machine, the results of this testing and some comment on prospective application to the aerospace industry.
Journal Article

Role of Power Distribution System Tests in Final Assembly of a Military Derivative Airplane

2009-11-10
2009-01-3121
Boeing has contracts for military application of twin engine airplanes generically identified in this paper as the MX airplane. Unlike previous derivatives, the MX airplanes are produced with a streamlined manufacturing process to improve cost and schedule performance. The final assembly of each MX airplane includes a series of integration tests, called factory functional tests (FFTs), which are modified from those of typical commercial versions and verify correctness of equipment installation and basic functionalities. Two airplanes have been through the production line resulting in a number of FFT lessons learned. Addressed are the power distribution lessons learned: 1) the expanded coverage of the basic automated power-on generation system test, 2) the need for a manual wire continuity test, 3) salient features of the power distribution tests, and 4) keys to make first pass power distribution test smooth and successful.
Technical Paper

Development and Implementation of Sol-Gel Coatings for Aerospace Applications

2009-11-10
2009-01-3208
A family of water-based sol-gel coatings has been developed as an environmentally-friendly alternative to traditional aerospace finishing materials and processes. The sol-gel hybrid network is based on a reactive mixture of an organo-functionalized silane with a stabilized zirconium complex. Thin films of the material self-assemble on metal surfaces, resulting in a gradient coating that provides durable adhesion for paints, adhesives, and sealants. Use of the novel coating as a surface pretreatment for the exterior of commercial aircraft has enabled environmental, health, and safety benefits due to elimination of hexavalent chromium, and flight test and early fleet survey data support the laboratory observations that the sol gel coating reduces the occurrence of “rivet rash” adhesion failures. Modifications of the basic inorganic/organic hybrid network have yielded multifunctional coatings with promise for applications such as corrosion control and oxidation protection.
Technical Paper

Efficient Assembly Integration and Test (EAIT) Moves Theory to Practice at a System Level to Effect Lean Outcomes on the Shop Floor

2009-11-10
2009-01-3169
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
Technical Paper

Modeling of Commercial Airplanes Service Request Process Flows

2009-11-10
2009-01-3199
The repairing of commercial aircraft is a complex task. Service engineers at Boeing's Commercial Aviation Services group specialize in providing crucial repair information and technical support for its many customers. This paper details factors that influence Boeing's response time to service requests and how to improve it. Information pertaining to over 5000 service requests from 2008 and 2009 was collected. From analysis of this data set, important findings were discovered. One major finding is that between 6 and 8 percent of service requests are late because time/date stamps used in reports were created in a different time zone.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Technical Paper

Modification of the USOS to Support Installation and Activation of the Node 3 Element

2009-07-12
2009-01-2416
The International Space Station (ISS) program is nearing an assembly complete configuration with the addition of the final resource node module in early 2010. The Node 3 module will provide critical functionality in support of permanent long duration crews aboard ISS. The new module will permanently house the regenerative Environment Control and Life Support Systems (ECLSS) and will also provide important habitability functions such as waste management and exercise facilities. The ISS program has selected the Port side of the Node 1 “Unity” module as the permanent location for Node 3 which will necessitate architecture changes to provide the required interfaces. The USOS ECLSS fluid and ventilation systems, Internal Thermal Control Systems, and Avionics Systems require significant modifications in order to support Node 3 interfaces at the Node 1 Port location since it was not initially designed for that configuration.
Journal Article

Status of the International Space Station (ISS) Trace Contaminant Control System

2009-07-12
2009-01-2353
A habitable atmosphere is a fundamental requirement for human spaceflight. To meet this requirement, the cabin atmosphere must be constantly scrubbed to maintain human life and system functionality. The primary system for atmospheric scrubbing of the US on-orbit segment (USOS) of the International Space Station (ISS) is the Trace Contaminant Control System (TCCS). As part of the Environmental Control and Life Support Systems' (ECLSS) atmosphere revitalization rack in the US Lab, the TCCS operates continuously, scrubbing trace contaminants generated primarily by two sources: the metabolic off-gassing of crew members and the off-gassing of equipment in the ISS. It has been online for approximately 95% of the time since activated in February 2001. The TCCS is comprised of a charcoal bed, a catalytic oxidizer, and a lithium hydroxide post-sorbent bed, all of which are designed to be replaced on-orbit when necessary.
Journal Article

Computational Fluid Dynamics Analysis for the Waste and Hygiene Compartment in the International Space Station

2008-06-29
2008-01-2057
Computational Fluid Dynamics airflow models for the Waste and Hygiene Compartment (WHC) in the U.S. Laboratory module and Node 3 were developed and examined. The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. An additional set of Russian hardware, known as the system, is planned for the United States Operational Segment (USOS) to support expansion of the crew to six persons. Integration of the Russian system into the USOS incorporates direct Environmental Control and Life Support System (ECLSS) interfaces to allow more autonomous operation. A preliminary design concept was used to create a geometry model to evaluate the air interaction with the module cabin at varied locations and performance of the avionics fan placed in WHC. The Russian and the privacy protection bump-outs (Kabin) were included into the present modeling.
Technical Paper

ISS IATCS Coolant Loop Biocide Implementation

2008-06-29
2008-01-2159
The proliferation and growth of microorganisms in the Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) has been of significant concern since 2001. Initial testing and assessments of biocides to determine bacterial disinfection capability, material compatibility, stability (rate of oxidative degradation and identification of degradation products), solubility, application methodology, impact on coolant toxicity hazard level, and impact on environmental control and life support systems identified a prioritized list of acceptable biocidal agents including glutaraldehyde, ortho-phthalaldehyde (OPA), and methyl isothiazolone. Glutaraldehyde at greater than 25 ppm was eliminated due to NASA concerns with safety and toxicity and methyl isothiazolone was eliminated from further consideration due to ineffectiveness against biofilms and toxicity at higher concentrations.
Journal Article

International Space Station (ISS) Major Constituent Analyzer (MCA) On-Orbit Performance

2008-06-29
2008-01-1971
This paper summarizes the first seven plus years of on-orbit operation for the Major Constituent Analyzer (MCA). The MCA is an essential part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer instrument in the US Destiny Laboratory Module, which provides critical monitoring of six major atmospheric constituents (nitrogen (N2), oxygen (O2), hydrogen (H2), carbon dioxide (CO2), methane (CH4), and water vapor (H2O)). These gases are sampled continuously and automatically in all United States On Orbit Segment (USOS) modules via the ISS Sample Delivery System (SDS). Continuous readout of the partial pressures of these gases is critical to verifying safe operation of the Atmosphere Re-vitalization (AR) system, Atmosphere Control System (ACS), and crew safety for Airlock Extravehicular Activity (EVA) preparation.
Journal Article

International Space Station USOS Waste and Hygiene Compartment Development

2008-06-29
2008-01-2137
The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. An additional set of Russian hardware, known as the АСУ system, is planned for the United States Operational Segment (USOS) to support expansion of the crew to six persons. Integration of the Russian АСУ system into the USOS incorporates direct Environmental Control and Life Support System (ECLSS) interfaces to allow more autonomous operation as well as maximized water recovery. An interface has been added to provide water directly to the system for flush purposes as well as a urine delivery interface which will result in less crew time for system maintenance. The direct urine interface will be used to recover water within the urine processing system.
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

Resupply of High Pressure Oxygen and Nitrogen Tanks for Extra-Atmospheric Station and Bases

2007-07-09
2007-01-3179
The Shuttle retirement in 2010 will force the ISS program to reconsider how to supply the Station with nitrogen and oxygen for six to ten more years beyond 2010. The major options for post-Shuttle retirement resupply are resupply via transfer vehicle, the use of small Intervehicular Activity (IVA) high pressure tanks, “stockpile” enough gas to support International Space Station (ISS) through end of life, or generate the necessary gases onboard the Station. The method chosen to sustain the ISS will serve as a building block for producing new minimally dependent environmental control and life support systems for future manned missions to the Moon, Mars and beyond.
X