Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Opportunities, Challenges and Requirements for Use of Blockchain in Unmanned Aircraft Systems Operating Below 400ft Above Ground Level for Commercial Use

2024-03-05
2024-01-1928
The number of Unmanned Aircraft Systems (UAS) has been growing over the past few years and will continue to grow at a faster pace in the near future. UAS faces many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain, defined as a distributed ledger technology for the enterprise that features immutability, traceability, automation, data privacy, and security, can help address some of these challenges. However, blockchain also has certain drawbacks and, additionally, it is still not fully mature. Hence it is essential to study how blockchain can help UAS. This Aerospace Information Report (AIR) presents the current opportunities, challenges of UAS operating at or below 400 ft Above Ground Level (AGL) altitude for commercial use and how blockchain can help meet these challenges. It also provides requirements for developing a blockchain solution for UAS along with the need for the standardization of blockchain enabled processes.
Technical Paper

Considerations for Requirements and Specifications of a Digital Thread in Aircraft Data Life Cycle Management

2024-03-05
2024-01-1946
The aircraft lifecycle involves thousands of transactions and an enormous amount of data being exchanged across the stakeholders in the aircraft ecosystem. This data pertains to various aircraft life cycle stages such as design, manufacturing, certification, operations, maintenance, and disposal of the aircraft. All participants in the aerospace ecosystem want to leverage the data to deliver insight and add value to their customers through existing and new services while protecting their own intellectual property. The exchange of data between stakeholders in the ecosystem is involved and growing exponentially. This necessitates the need for standards on data interoperability to support efficient maintenance, logistics, operations, and design improvements for both commercial and military aircraft ecosystems. A digital thread defines an approach and a system which connects the data flows and represents a holistic view of an asset data across its lifecycle.
Technical Paper

Opportunities, Challenges and Requirements for Use of Blockchain in Unmanned Aircraft Systems

2023-09-05
2023-01-1504
Unmanned Aircraft Systems (UAS) have been growing over the past few years and will continue to grow at a faster pace in future. UAS faces many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain, defined as a distributed ledger technology for the enterprise that features immutability, traceability, automation, data privacy, and security, can help address some of these challenges. However, blockchain also has certain challenges and is still evolving. Hence it is essential to study on how blockchain can help UAS. G-31 technical committee of SAE International responsible for electronic transactions for aerospace has published AIR 7356 [1] entitled Opportunities, Challenges and Requirements for use of Blockchain in Unmanned Aircraft Systems Operating below 400ft above ground level for Commercial Use. This paper is a teaser for AIR 7356 [1] document.
Technical Paper

Application of Mixed Reality (MR) Based Remote Assistance for Disposition & Resolution on Critical Nonconformance (NC) for Aircraft Production System during Covid or Post Covid Work Environment

2022-10-05
2022-28-0077
Currently, the Aviation industry uses traditional methods of communication, coordination, & human interaction to give disposition to resolve any kind of nonconformance occurrences which occur during manufacturing or operation of commercial or defense products. This involves increased in-person interaction and additional travel, especially to address the nonconformance issues arising at supplier plants or airports around the globe. During Covid and post-Covid environments, human interactions for the transfer of detailed information at different & distant manufacturing plant locations has been difficult, since support engineering teams (Example: Liaison, Product Review, Quality, Supplier Quality, and Manufacturing Engineering, and/or Service Engineering) have been working remotely.
Technical Paper

Use of Cavitation Abrasive Surface Finishing to Improve the Fatigue Properties of Additive Manufactured Titanium Alloy Ti6Al4V

2021-03-02
2021-01-0024
To improve the fatigue properties of additive manufactured (AM) titanium alloy Ti6Al4V, cavitation abrasive surface finishing (CASF) was proposed. With CASF, a high-speed water jet with cavitation, i.e. a cavitating jet, was injected into a water-filled chamber, to which abrasives were added. Abrasives accelerated by the jet created a smooth surface by removing un-melted particles on the surface. Simultaneously, cavitation impacts induced by the jet introduced compressive residual stress and work hardening into the surface, similar to cavitation peening. In this study, to demonstrate the improvement of the fatigue properties of AM Ti6Al4V owing to CASF, Ti6Al4V specimens manufactured through direct metal laser sintering (DMLS) and electron beam melting (EBM) were treated using CASF and cavitation peening, and tested using a plane bending fatigue test.
Journal Article

Application of Metrology, Statistics, Root Cause Analysis, and Cost of Quality to Enable Quality Improvements and Implementation of Statistical Process Controls for Acceptance of Large Complex Assemblies

2021-03-02
2021-01-0025
For new aircraft production, initial production typically reveals difficulty in achieving some assembly level tolerances which in turn lead to non-conformances at integration. With initial design, tooling, build plans, automation, and contracts with suppliers and partners being complete, the need arises to resolve these integration issues quickly and with minimum impact to production and cost targets. While root cause corrective action (RCCA) is a very well know process, this paper will examine some of the unique requirements and innovative solutions when addressing variation on large assemblies manufactured at various suppliers. Specifically, this paper will first review a completed airplane project (Project A) to improve fuselage circumferential and seat track joins and continue to the discussion on another application (Project B) on another aircraft type but having similar challenges.
Journal Article

Digital Data Standards in Aircraft Asset Lifecycle: Current Status and Future Needs

2021-03-02
2021-01-0035
The aerospace ecosystem is a complex system of systems comprising of many stakeholders in exchanging technical, design, development, certification, operational, and maintenance data across the different lifecycle stages of an aircraft from concept, engineering, manufacturing, operations, and maintenance to its disposal. Many standards have been developed to standardize and improve the effectiveness, efficiency, and security of the data transfer processes in the aerospace ecosystem. There are still challenges in data transfer due to the lack of standards in certain areas and lack of awareness and implementation of some standards. G-31 standards committee of SAE International has conducted a study on the available digital data standards in aircraft asset life cycle to understand the current and future landscapes of the needed digital data standards and identify gaps. This technical paper presents the study conducted by the G-31 technical committee.
Journal Article

Los Alamos High-Energy Neutron Testing Handbook

2020-03-10
2020-01-0054
The purpose of the Los Alamos High-Energy Neutron Testing Handbook is to provide user information and guidelines for testing Integrated Circuits (IC) and electronic systems at the Irradiation of Chips and Electronics (ICE) Houses at the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory (LANL). Microelectronic technology is constantly advancing to higher density, faster devices and lower voltages. These factors may increase device susceptibility to radiation effects. The high-energy neutron source at LANSCE/LANL provides the capability for accelerated neutron testing of semiconductor devices and electronic systems and to simulate effects in various neutron environments.
Journal Article

Advancements of Superplastic Forming and Diffusion Bonding of Titanium Alloys for Heat Critical Aerospace Applications

2020-03-10
2020-01-0033
Titanium’s high strength-to-weight ratio and corrosion resistance makes it ideal for many aerospace applications, especially in heat critical zones. Superplastic Forming (SPF) can be used to form titanium into near-net, complex shapes without springback. The process uses a machined die where inert gas is applied uniformly to the metal sheet, forming the part into the die cavity. Standard titanium alpha-beta alloys, such as 6Al-4V, form at temperatures between 900 and 925°C (1650-1700°F). Recent efforts have demonstrated alloys that form at lower temperatures ranging between 760 and 790°C (1400-1450°F). Lowering the forming temperature reduces the amount of alpha case that forms on the part, which must be removed. This provides an opportunity of starting with a lower gauge material. Lower forming temperatures also limit the amount of oxidation and wear on the tool and increase the life of certain press components, such as heaters and platens.
Journal Article

High Altitude Ice Crystal Detection with Aircraft X-band Weather Radar

2019-06-10
2019-01-2026
During participation on EU FP7 HAIC project, Honeywell has developed methodology to detect High Altitude Ice Crystals with the Honeywell IntuVue® RDR-4000 X-band Weather Radar. The algorithm utilizes 3D weather buffer of RDR-4000 weather radar and is based on machine learning. The modified RDR-4000 Weather Radar was successfully flight tested during 2016 HAIC Validation Campaign; the technology was granted Technology Readiness Level 6 by HAIC consortium. After the end of HAIC project, the method was also evaluated with respect to newly set preliminary industry standard performance requirements1. This paper discuses technology design rationale, high level technology architecture, technology performance, and challenges associated with performance evaluation.
Journal Article

Powder Reuse and Its Effects on Laser Based Powder Fusion Additive Manufactured Alloy 718

2016-09-20
2016-01-2071
Laser Based Powder Bed Fusion, a specific application of additive manufacturing, has shown promise to replace traditionally fabricated components, including castings and wrought products (and multiple-piece assemblies thereof). In this process, powder is applied, layer by layer, to a build plate, and each layer is fused by a laser to the layers below. Depending on the component, it appears that only 3-5% of the powder charged into the powder bed fusion machine is fused. Honeywell’s initial part qualification efforts have prohibited the reuse of powder. Any unfused powder that exits the dispenser (i.e., surrounds the build or is captured in the overflow) is considered used. In order for the process to be broadly applicable in an economical manner, a methodology should be developed to render the balance of the powder (up to 97% of the initial charge weight) as re-usable.
Technical Paper

Lightning Requirements: Where They Come From and How to Analyze Their Impact

2012-10-22
2012-01-2149
Many avionics and aircraft equipment manufacturers use DO-160 [Ref. 1] Section 22 to test their equipment for indirect effects of lightning without understanding why they are testing to specific values. Many aircraft manufacturers struggle with determining the level of indirect lightning that will be acceptable for their vehicle and what level of requirements they need to pass down to the avionics and aircraft equipment manufacturers. Organizations like SAE and RTCA, Inc. work to collect data on lightning and spend countless hours assimilating the information and developing documents to help engineers use the information. They struggle with knowing what data is pertinent and how it will be received and used by the engineering community.
Technical Paper

Refinements to Mechanical Health Monitoring Algorithms

2012-10-22
2012-01-2096
This paper discusses recent improvements made by Honeywell's Condition-Based Maintenance (CBM) Center of Excellence (COE) to Mechanical Health Management (MHM) algorithms. The Honeywell approach fuses Condition Indicators (CIs) from vibration monitoring and oil debris monitoring. This paper focuses on using MHM algorithms for monitoring gas turbine engines. First an overview is given that explains the general MHM approach, and then specific examples of how the algorithms are being refined are presented. One of the improvements discussed involves how to detect a fault earlier in the fault progression, while continuing to avoid false alarms. The second improvement discussed is how to make end of life thresholds more robust: rather than relying solely on the cumulative mass of oil debris, the end of life indication is supplemented with indicators that consider the rate of debris generation.
Technical Paper

Creating a System Architecture for a Vehicle Condition-Based Maintenance System

2012-10-22
2012-01-2097
An emerging emphasis for the design and development of vehicle condition-based maintenance (CBM) systems amplifies its use for conducting vehicle maintenance based on evidence of need. This paper presents a systems engineering approach to creating an integrated vehicle health management (IVHM) architecture which places emphasis on the system's ultimate use to meet the operational needs of the vehicle and fleet maintainer, to collect data, conduct analysis, and support the decision-making processes for the sustainment and operations of the vehicle and assets being monitored. The demand for a CBM system generally assumes that the asset being monitored is complex or that the operational use of the system demands complexity, timely response or that system failure has catastrophic results. Ground vehicles are such complex systems, which are the emphasis of this paper. Developing the system architecture of such complex systems demands a systematic approach.
Technical Paper

Heat Exchanger Fouling Detection in Aircraft Environmental Control Systems

2012-10-22
2012-01-2107
The operating environment of aircraft causes accumulation and build-up of contamination on both the narrowest passages of the ECS (Environmental Control System) i.e: the heat exchangers. Accumulated contamination may lead to reduction of performance over time, and in some case to failures causing AOG (Aircraft on Ground), customer dissatisfaction and elevated repair costs. Airframers/airlines eschew fixed maintenance cleaning intervals because of the high cost of removing and cleaning these devices preferring instead to rely on on-condition maintenance. In addition, on-wing cleaning is t impractical because of installation constrains. Hence, it is desirable to have a contamination monitoring that could alert the maintenance crew in advance to prepare and minimize disruption when contamination levels exceed acceptable thresholds. Two methods are proposed to achieve this task, The effectiveness of these methods are demonstrated using analytical and computational tools.
Technical Paper

SSPC Technologies for Aircraft High Voltage DC Power Distribution Applications

2012-10-22
2012-01-2213
There is a growing need for high voltage direct current (HVDC) power distribution systems in aircraft which provide low-loss distribution with low weight. Challenges associated with HVDC distribution systems include improving reliability and reducing the size and weight of key components such as electric load control units (ELCUs), or remote power controllers (RPCs) for load control and feeder protection, and primary bus switching contactors. The traditional electromechanical current interrupting devices suffer from poor reliability due to arcs generated during repeated closing and opening operations, and are generally slow in isolating a fault with potentially high let-through energy, which directly impacts system safety.
Journal Article

Estimating Return on Investment for SAVI (a Model-Based Virtual Integration Process)

2011-10-18
2011-01-2576
The System Architecture Virtual Integration (SAVI) program is a collaboration of industry, government, and academic organizations within the Aerospace Vehicle System Institute (AVSI) with the goal of structuring a new integration process that relies on a “single-truth” architectural framework. The SAVI approach of “Integrate, then Build” provides a modern distributed development environment which arrests the propagation of requirements errors through the development life cycle. It does so by capturing design assumptions and shared properties of the system design in an authoritative, annotated architectural model. This reference model provides a common, analyzable framework for confirming that system requirements remain complete, consistent, and correct at all levels of system decomposition. Core concepts of SAVI include extensive use of model-based system engineering tools and use of a “single-truth” reference architectural model.
Technical Paper

Calculations of Ice Shapes on Oscillating Airfoils

2011-06-13
2011-38-0015
The desire to operate rotorcraft in icing conditions has renewed the interest in developing high-fidelity analysis methods to predict ice accumulation and the ensuing rotor performance degradation. A subset of providing solutions for rotorcraft icing problems is predicting two-dimensional ice accumulation on rotor airfoils. While much has been done to predict ice for fixed-wing airfoil sections, the rotorcraft problem has two additional challenges: first, rotor airfoils tend to experience flows in higher Mach number regimes, often creating glaze ice which is harder to predict; second, rotor airfoils oscillate in pitch to produce balance across the rotor disk. A methodology and validation test cases are presented to solve the rotor airfoil problem as an important step to solving the larger rotorcraft icing problem. The process couples Navier-Stokes CFD analysis with the ice accretion analysis code, LEWICE3D.
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Journal Article

Protection of the C-17 Airplane during Semi Prepared Runway Operations

2009-11-10
2009-01-3203
The C-17 airplane operates in some of the most challenging environments in the world including semi prepared runway operations (SPRO). Typical semi-prepared runways are composed of a compacted soil aggregate of sand, silt, gravel, and rocks. When the airplane lands or takes off from a semi-prepared runway, debris, including sand, gravel, rocks and, mud is kicked up from the nose landing gear (NLG) and the main landing gear (MLG) tires. As the airplane accelerates to takeoff or decelerates from landing touchdown, this airborne debris impacts the underbelly and any component mounted on the underbelly. The result is the erosion of the protective surface coating and damage to systems that protrude below the fuselage into the debris path. The financial burden caused by SPRO damage is significant due to maintenance costs, spares costs and Non-Mission Capable (NMC) time.
X