Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Considerations in Material, Part, and Process Design for Downgauged RRIM Applications

2003-03-03
2003-01-0209
To address the automotive industry's initiative to maximize the utility of each component by decreasing both weight and cost to improve the performance and value of its products, it is logical to try to minimize the thickness of any part whose main function is ostensibly decorative. A example of such a candidate part on the vehicle would be the fascia and body side claddings. The fascia and claddings of vehicles do provide some impact resistance and resiliency functionality to vehicles, but more and more, the energy management functionality is being taken on by improvements in the engineering design and support systems behind the exterior part. The function of these exterior parts then, is, to a large degree, to be aesthetically pleasing when painted, and maintain their high quality fit and finish over the life of the vehicle. These applications are therefore justifiably subject to investigations into the reduction of their wallstock.
Technical Paper

Remote Injection Molding Trial Support Using Wireless Video Camera Technology and Traditional Videoconferencing Capabilities

2002-03-04
2002-01-0724
The challenging economic climate of today is causing many suppliers to develop new and creative ways to improve efficiency and meet the needs of customers without jeopardizing the quality of service and support. The Dow Automotive business group is evaluating a new mechanism for remotely supporting customers' injection molding trials by combining wireless video camera technology and traditional videoconference (VC) capabilities. The Video Response System™ (VRS), from Teleco Video Systems, incorporates a wireless remote camera on a wheeled tripod and a wireless audio connection to allow users to transmit a real-time video and audio signal from anywhere within a location to other sites around the globe. The video and audio signals generated by the VRS system are transmitted to a traditional VC unit in the molding shop which in turn transmits the signals over ISDN lines to an awaiting VC unit.
Technical Paper

Engineering Development of a Fully-Integrated Polypropylene Instrument Panel Concept

2001-03-05
2001-01-0841
In the present paper the engineering development of a structural instrument panel (IP) concept made of a Polypropylene (PP) rubber modified compound filled with 15% talc in which the metal cross car beam has been eliminated, is discussed. The design concept consists of three main injection molded shells which are vibration welded to each other to form a stiff structure. The steering column is attached to the BIW and plastic structure by means of a separate column support made of steel, aluminum, magnesium or fiber-reinforced plastic. The concept has been developed for the European market and is therefore not intended to meet the unbelted FMVSS 208 requirements. The total IP assembly has a substantially lower cost and weight than conventional cross car beam based IP structures while meeting all of the performance requirements. The concept development was supported by static and dynamic numerical analyses using well established, widely used FEA codes.
Technical Paper

Engineering the 1999 Mercury Cougar Hybrid Instrument Panel

1999-03-01
1999-01-0692
In a joint effort between Ford Motor Company, Visteon Automotive Systems, Textron Automotive Company, and Dow Automotive the 1999 Mercury Cougar instrument panel (IP) was designed and engineered to reduce the weight and overall cost of the IP system. The original IP architecture changed from a traditional design that relied heavily upon the steel structure to absorb and dissipate unbelted occupant energy during frontal collisions to a hybrid design that utilizes both plastic and steel to manage energy. This design approach further reduced IP system weight by 1.88 Kg and yielded significant system cost savings. The hybrid instrument panel architecture in the Cougar utilizes a steel cross car beam coupled to steel energy absorbing brackets and a ductile thermoplastic substrate. The glove box assembly and the driver knee bolster are double shell injection molded structures that incorporate molded-in ribs for added stiffness.
Technical Paper

The Contribution of Molded Polyurethane Foam Characteristics to Comfort and Durability of Car Seats

1999-03-01
1999-01-0585
The major element of contact between the occupant, the vehicle and the road surface is the automobile seat. Flexible polyurethane foams are the material of choice for this application, not only because of the economies offered by large-scale molding operations, but also because the cushioning characteristics of the foam/seat assembly can be adjusted. The automotive original equipment manufacturers (OEM’s) worldwide are looking for optimization of the balance between foam weight and foam specifications, with more emphasis than ever on comfort and durability. This goes with specific requirements for the various foam pads, i.e., front cushion, rear cushion, front backrest and rear backrest. Commercially useful foams can be made from a variety of polyurethane molding chemistries.
Technical Paper

Evolution of Instrument Panels Made of Polypropylene

1998-02-23
980067
Among the various materials used today for an instrument panel application, polypropylene is one of the least expensive per kilogram and therefore one of the most attractive. Typically, different polypropylene compounds may be used in different components of the IP according to the desired performance requirements. At the same time, polypropylene is one of the most difficult thermoplastics to use properly when designing an instrument panel due to weaknesses related to its semi-crystalline nature. For some vehicles, the metal reinforcement which would be needed to overcome these weaknesses would lead to a higher overall system cost compared with engineering thermoplastics. In the last decade significant progress has been made in the development of new polypropylene compounds and processes.
Technical Paper

Evolution of Plastics IP Technology Technical Feasibility of Integrated Modular IP System

1998-02-23
980435
Fully-integrated structural instrument panels (IP) have been in commercial use in passenger cars, light trucks, and sport utility vehicles for some years now. They offer a cost-effective alternative to the more traditional IP construction that utilizes full-size cross car beams to achieve the structural stiffness and energy management required to meet Federal Motor Vehicle Safety Standard (FMVSS) 208 and corporate performance requirements. The natural evolution of interior designs demands an increasing level of integration of the different components in the interior of the vehicle. Therefore, the natural extension of current structural IP technology is to integrate the steering column subassembly, i.e., steering column and column support, and the heat, ventilation, and air conditioning (HVAC) unit into a modular pre-assembled system.
Technical Paper

Infrared Post-Cure of RIM Body Panels: A Significant Cost Savings

1998-02-23
980988
A new RRIM system produces a polyurea polymer that is capable of going through a traditional assembly process including E-coat bakes of up to 200C. In order to achieve the necessary performance characteristics, the high temperature resistant polyurea RIM polymer requires post-cure temperatures between 180C and 200C. Existing ovens are designed to post-cure materials below 160C. Also, existing ovens may not be large enough to handle pickup truck rear fenders. The existing ovens need to be refurbished or new ones built to meet the new market demand. To reduce the cost of the post-cure process, infrared (IR) radiation was tested to determine its utility for post-curing RIM parts. It was demonstrated that a infrared radiation can be used to pre-heat the RIM part in 1/10th the time of a convection oven in the laboratory. The benefit of using infrared radiation is improved dimensional stability and impact properties with acceptable flexural modulus.
X