Refine Your Search

Topic

Author

Search Results

Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Identifying the limitations of the Hot Tube test as a predictor of lubricant performance in small engine applications

2020-01-24
2019-32-0510
The Hot Tube Test is a bench test commonly used by OEMs, Oil Marketers and Lubricant Additive manufacturers within the Small Engines industry. The test uses a glass tube heated in an aluminum block to gauge the degree of lacquer formation when a lubricant is subjected to high temperatures. This test was first published by engineers at Komatsu Ltd. (hence KHT) in 1984 to predict lubricant effects on diesel engine scuffing in response to a field issue where bulldozers were suffering from piston scuffing failures [1]. Nearly 35 years after its development the KHT is still widely used to screen lubricant performance in motorcycle, power tool and recreational marine applications as a predictor of high-temperature piston cleanliness - a far cry from the original intended performance predictor of the test. In this paper we set out to highlight the shortcomings of the KHT as well as to identify areas where it may still be a useful screening tool as it pertains to motorcycle applications.
Technical Paper

A real-world fleet test of the effects of engine oil on Low Speed Pre-Ignition occurrence in TGDi engine

2019-12-19
2019-01-2294
In the last decade, numerous studies have been conducted to investigate the mechanism of Low Speed Pre-Ignition (LSPI) in Turbocharged Gasoline Direct Injection (TGDi) engines. According to technical reports, engine oil formulations can significantly influence the occurrence of LSPI particularly when higher levels of calcium-based additives are used, increasing the tendency for LSPI events to occur. While most of the studies conducted to date utilized engine tests, this paper evaluates the effect of engine oil formulations on LSPI under real-world driving conditions, so that not only the oil is naturally aged within an oil change interval, but also the vehicle is aged through total test distance of 160,000 km. Three engine oil formulations were prepared, and each tested in three vehicles leading to an identical fleet totaling nine vehicles, all of which were equipped with the same TGDi engine.
Technical Paper

A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test

2019-04-02
2019-01-0299
Increasingly stringent vehicle emissions legislation is being introduced throughout the world, regulating the allowed levels of particulate matter emitted from vehicle tailpipes. The regulation may prove challenging for gasoline vehicles equipped with modern gasoline direct injection (GDI) technology, owing to their increased levels of particulate matter production. It is expected that gasoline particulate filters (GPFs) will soon be fitted to most vehicles sold in China and Europe, allowing for carbonaceous particulate matter to be effectively captured. However, GPFs will also capture and accumulate non-combustible inorganic ash within them, mainly derived from engine oil. Studies exist to demonstrate the impact of such ash on GPF and vehicle performance, but these commonly make use of accelerated ash loading methods, which themselves introduce significant variation.
Technical Paper

Low Speed Pre-Ignition (LSPI) Durability – A Study of LSPI in Fresh and Aged Engine Oils

2018-04-03
2018-01-0934
Downsized gasoline engines, coupled with gasoline direct injection (GDI) and turbocharging, have provided an effective means to meet both emissions standards and customers’ drivability expectations. As a result, these engines have become more and more common in the passenger vehicle marketplace over the past 10 years. To maximize fuel economy, these engines are commonly calibrated to operate at low speeds and high engine loads – well into the traditional ‘knock-limited’ region. Advanced engine controls and GDI have effectively suppressed knock and allowed the engines to operate in this high efficiency region more often than was historically possible. Unfortunately, many of these downsized, boosted engines have experienced a different type of uncontrolled combustion. This combustion occurs when the engine is operating under high load and low speed conditions and has been named Low Speed Pre-Ignition (LSPI). LSPI has shown to be very damaging to engine hardware.
Journal Article

Engine Oil Fuel Economy Testing - A Tale of Two Tests

2017-03-28
2017-01-0882
Fuel economy is not an absolute attribute, but is highly dependent on the method used to evaluate it. In this work, two test methods are used to evaluate the differences in fuel economy brought about by changes in engine oil viscosity grade and additive chemistry. The two test methods include a chassis dynamometer vehicle test and an engine dynamometer test. The vehicle testing was conducted using the Federal Test Procedure (FTP) testing protocol while the engine dynamometer test uses the proposed American Society for Testing and Materials (ASTM) Sequence VIE fuel economy improvement 1 (FEI1) testing methodology. In an effort to improve agreement between the two testing methods, the same model engine was used in both test methods, the General Motors (GM) 3.6 L V6 (used in the 2012 model year Chevrolet™ Malibu™ engine). Within the lubricant industry, this choice of engine is reinforced because it has been selected for use in the proposed Sequence VIE fuel economy test.
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Technical Paper

Next Generation Torque Control Fluid Technology, Part III: Using an Improved Break-Away Friction Screen Test to Investigate Fundamental Friction Material-Lubricant Interactions

2010-10-25
2010-01-2231
Wet clutch friction devices are the primary means by which torque is transmitted in many of today's modern vehicle drivelines. These devices are used in automatic transmissions, torque vectoring devices, active on-demand vehicle stability systems, and torque biasing differentials. As discussed in a previous SAE paper ( 2006-01-3270 - Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Slip Screen Test Development), a testing tool was developed to simulate a limited slip differential break-away event using a Full Scale-Low Velocity Friction Apparatus (FS-LVFA). The purpose of this test was to investigate the fundamental interactions between lubricants and friction materials. The original break-away friction screen test, which used actual vehicle clutch plates and a single friction surface, proved a useful tool in screening new friction modifier technology.
Journal Article

Impact of Lubricating Oil Condition on Exhaust Particulate Matter Emissions from Light Duty Vehicles

2010-05-05
2010-01-1560
Limited technical studies to speciate particulate matter (PM) emissions from gasoline fueled vehicles have indicated that the lubricating oil may play an important role. It is unclear, however, how this contribution changes with the condition of the lubricant over time. In this study, we hypothesize that the mileage accumulated on the lubricant will affect PM emissions, with a goal of identifying the point of lubricant mileage at which PM emissions are minimized or at least stabilized relative to fresh lubricant. This program tested two low-mileage Tier 2 gasoline vehicles at multiple lubricant mileage intervals ranging from zero to 5000 miles. The LA92 cycle was used for emissions testing. Non-oxygenated certification fuel and splash blended 10% and 20% ethanol blends were used as test fuels.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

A Comprehensive Examination of the Effect of Ethanol-Blended Gasoline on Intake Valve Deposits in Spark-Ignited Engines

2007-10-29
2007-01-3995
Ethanol-gasoline blends are widely understood to present certain technical challenges to engine operation. Despite widespread use of fuels ranging from E5 (5% ethanol in gasoline) in some European countries to E10 (10% ethanol) in the United States to E100 (100% ethanol; “alcool”) in Brazil, there are certain subjects which have only anecdotally been examined. This paper examines two such issues: the effect of ethanol on intake valve deposits (IVD) and the impact of fuel additive on filter plugging (a measure of solubility). The effect of ethanol on IVD is studied along two lines of investigation: the effect of E10 in a multi-fuel data set carried out in the BMW 318i used for EPA and CARB certification, and the effect of varying ethanol content from 0% to 85% in gasoline carried out in a modern flex-fuel vehicle.
Technical Paper

Breaking the Viscosity Paradigm: Formulating Approaches for Optimizing Efficiency and Vehicle Life

2005-10-24
2005-01-3860
The popularity of light trucks and sport utility vehicles (SUVs), coupled with growing consumer demand for vehicles with more size, weight and horsepower, has challenged the original equipment manufacturers' (OEM) ability to meet the Corporate Average Fuel Economy (CAFE) specifications due to the increased contribution of these vehicle classes on fleet averages. The need for improved fuel economy is also a global issue due to the relationship of reduced fuel consumption to reduced CO2 emissions. Vehicle manufacturers are challenged to match the proper fluid with the application to provide the required durability protection while maximizing fuel efficiency. Recent new viscosity classifications outlined under SAE J306 aid in more tightly defining options for lubricant choice for a given application. Changes to the SAE J306 viscosity classification define new intermediate viscosity grades, SAE 110 and SAE 190.
Technical Paper

A Method to Assess Grease Temperature Response in CVJ Applications

2005-05-11
2005-01-2177
The constant velocity joint (CVJ) has seen increased usage driven by the growth of front wheel drive vehicles over the last 30 years. The CVJ provides a smooth, dynamic connection between the output of the axle or gearbox and the driving wheels of the vehicle. The seemingly simple device, however, requires specially designed greases to maximize protection of the internal components from distress and provide optimum performance and service life. One measure of potential distress in the CVJ can be related to temperature rise which is a reflection of the friction and wear properties of the grease employed. A test rig was designed and a method created to evaluate the temperature response of different greases used in a CVJ. The test rig was designed to allow a wide range of speeds, torques and shaft angles to be used. The rig uses a unique temperature pickup system to allow for dynamic measurement of the grease temperature in the boot.
Technical Paper

Developing a Precision and Severity Monitoring System for CEC Performance Tests

2004-06-08
2004-01-1892
The Coordinating European Council, CEC, develops performance tests for the motor, oil, petroleum, additive and allied industries. In recent years, CEC has moved away from using round robin programmes (RRP's) for monitoring the precision and severity of test methods in favour of regular referencing within a test monitoring system (TMS). In a TMS, a reference sample of known performance, determined by cross-laboratory testing, is tested at regular intervals at each laboratory. The results are plotted on control charts and determine whether the installation is and continues to be fit to evaluate products. Results from all laboratories are collated and combined to monitor the general health of the test. The TMS approach offers considerable benefits in terms of detecting test problems and improving test quality. However, the effort required in collating data for statistical analysis is much greater, and there are technical difficulties in determining precision from TMS data.
Technical Paper

Engine Oil Effects on Friction and Wear Using 2.2L Direct Injection Diesel Engine Components for Bench Testing Part 2: Tribology Bench Test Results and Surface Analyses

2004-06-08
2004-01-2005
The effects of lubricating oil on friction and wear were investigated using light-duty 2.2L compression ignition direct injection (CIDI) engine components for bench testing. A matrix of test oils varying in viscosity, friction modifier level and chemistry, and base stock chemistry (mineral and synthetic) was investigated. Among all engine oils used for bench tests, the engine oil containing MoDTC friction modifier showed the lowest friction compared with the engine oils with organic friction modifier or the other engine oils without any friction modifier. Mineral-based engine oils of the same viscosity grade and oil formulation had slightly lower friction than synthetic-based engine oils.
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
Technical Paper

Engine Oil Effects on the Friction and Emissions of a Light-Duty, 2.2L Direct - Injection - Diesel Engine Part 1 - Engine Test Results

2002-10-21
2002-01-2681
The effects of lubricating oil on friction and engine-out emissions in a light-duty 2.2L compression ignition direct injection (CIDI) engine were investigated. A matrix of test oils varying in viscosity (SAE 5W-20 to 10W-40), friction modifier (FM) level and chemistry (MoDTC and organic FM), and basestock chemistry (mineral and synthetic) was investigated. Tests were run in an engine dynamometer according to a simulated, steady state FTP-75 procedure. Low viscosity oils and high levels of organic FM showed benefits in terms of fuel economy, but there were no significant effects observed with the oils with low MoDTC concentration on engine friction run in this program. No significant oil effects were observed on the gaseous emissions of the engine. PM emissions were analyzed for organic solubles and insolubles. The organic soluble fraction was further analyzed for the oil and fuel soluble portions.
Technical Paper

Controlling the Corrosion of Copper Alloys in Engine Oil Formulations: Antiwear, Friction Modifier, Dispersant Synergy

2002-10-21
2002-01-2767
The next generation of engine oil under development has been formulated to maintain beneficial oil lubrication properties at increased engine operating temperatures, increased drain-oil intervals, and with the recirculation of exhaust gas back through the engine (EGR). These conditions result in the formation of degradation products from decomposed fuel, additives, and base oil. Decomposition products containing reactive sulfur can result in the corrosion of copper alloys. Sulfur-containing compounds currently used in these formulations can include zinc dithiophosphates (ZDP), molydithiophosphates, molydithiocarbamates, and molybdic acid/amine complexes, along with sulfur containing detergents and antioxidants. Interactions among these components and others in the formulation often determine the propensity of these formulations for corrosion. This paper will discuss the results of corrosion bench tests used to screen oil formulations for copper corrosion.
Technical Paper

Developing Next Generation Axle Fluids: Part I - Test Methodology to Measure Durability and Temperature Reduction Properties of Axle Gear Oils

2002-05-06
2002-01-1691
Light trucks and sport utility vehicles (SUVs) have become extremely popular in the United States in recent years, but this shift to larger passenger vehicles has placed new demands upon the gear lubricant. The key challenge facing vehicle manufacturers in North America is meeting government-mandated fuel economy requirements while maintaining durability. Gear oils must provide long-term durability and operating temperature control in order to increase equipment life under severe conditions while maintaining fuel efficiency. This paper describes the development of a full-scale light duty axle test that simulates a variety of different driving conditions that can be used to measure temperature reduction properties of gear oil formulations. The work presented here outlines a test methodology that allows gear oil formulations to be compared with each other while accounting for axle changes due to wear and conditioning during testing.
X