Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Multi-Physics Numerical Analysis of PEMFC for Automobile Application

2013-04-08
2013-01-0476
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is regarded as a potential alternative clean energy source for automobile applications. Key challenges to the acceptance of PEMFC for automobiles are the cost reduction, improvement in power density for its compactness, and cold-start capability. High current density operation is a promising solution for them. However, high current density operation under normal and sub-zero temperature requires more oxygen flux for the electrochemical reaction in the catalyst layer, and it causes more heat and water flux, resulting in the significant voltage losses. So, the theoretical investigation is very helpful for the fundamental understanding of complex transport phenomena in high current density operation under normal and sub-zero temperature. In this study, the numerical model was established to elucidate the impacts of mass transport phenomena on the cell performance through the numerical validation with experimental and visualization results.
Technical Paper

Impact of Supplemental Natural Gas on Engine Efficiency, Performance, and Emissions

2013-04-08
2013-01-0847
In this study, the performance and emissions of a 4 cylinder 2.5L light-duty diesel engine with methane fumigation in the intake air manifold is studied to simulate a dual fuel conversion kit. Because the engine control unit is optimized to work with only the diesel injection into the cylinder, the addition of methane to the intake disrupts this optimization. The energy from the diesel fuel is replaced with that from the methane by holding the engine load and speed constant as methane is added to the intake air. The pilot injection is fixed and the main injection is varied in increments over 12 crank angle degrees at these conditions to determine the timing that reduces each of the emissions while maintaining combustion performance as measured by the brake thermal efficiency. It is shown that with higher substitution the unburned hydrocarbon (UHC) emissions can increase by up to twenty times. The NOx emissions decrease for all engine conditions, up to 53%.
Journal Article

Design, Development and Validation of the 2013 Penn State University E85 Series Plug-In Hybrid Vehicle

2012-09-10
2012-01-1773
The Pennsylvania State University Advanced Vehicle Team (PSU AVT) is one of the fifteen (15) participating teams at the EcoCAR 2 “Plugging In to the Future” challenge. The team has worked in the design, development and validation of converting a 2013 Chevrolet Malibu, into an advanced technology hybrid vehicle. The PSU AVT has determined that a Plug-In Series Electric Hybrid architecture best meets the design goals of the EcoCAR 2 competition. The vehicle will utilize a front-wheel drivetrain powered by a Magna E-drive; an Auxiliary Power Unit (APU) based on a naturally aspirated Weber MPE 750 engine, converted for use with E85, coupled to a UQM PowerPhase 75 generator; an Energy Storage System (ESS) based on six A123, 15s3p battery modules; and a Mototron ECM-5554-112-0904 controller as the Master Vehicle Controller (MVC).
Journal Article

Modeling of Li-ion Battery Performance in Hybrid Electric Vehicles

2009-04-20
2009-01-1388
Considerable improvements can be obtained in battery performance for hybrid electric vehicles (HEVs) by employing an electrochemistry-transport model based on a multi-physics modeling framework and ultrafast numerical algorithms. One important advantage of this approach over the lumped equivalent circuit (or look-up table) approach is the ability of the former to adapt to changes in design and control. In this work, we present mathematical and numerical details of our approach, and demonstrate the robustness of this battery model in simulation of short-pulse charge/discharge characteristic of HEV driving cycles under room and low temperatures.
Technical Paper

Thermodynamics and Its Applications through First-Principles Calculations and CALPHAD Modeling

2007-04-16
2007-01-1024
Thermodynamics is the key component of materials science and engineering. The manifestation of thermodynamics is typically represented by phase diagrams, traditionally for binary and occasionally ternary systems. Consequently, the applications of thermodynamics have been rather limited in multi-component engineering materials. Computational thermodynamics, developed in the last few decades, has released the power of thermodynamics. In this presentation, fundamental thermodynamics is reviewed, followed by an introduction of computational thermodynamics in terms of first-principles calculations and thermodynamic modeling, and its application to Mg alloys.
Technical Paper

Partial Oxidation Products and other Hydrocarbon Species in Diesel HCCI Exhaust

2005-10-24
2005-01-3737
A single cylinder engine was operated in HCCI mode with diesel-range fuels, spanning a range in cetane number (CN) from 34 to 62. In addition to measurements of standard gaseous emissions (CO, HC, and NOx), multiple sampling and analysis techniques were used to identify and measure the individual exhaust HC species including an array of oxygenated compounds. A new analytical method, using liquid chromatography (LC) with electrospray ionization-mass spectrometry (ESI-MS) in tandem with ultraviolet (UV) detection, was developed to analyze the longer chain aldehydes as well as carboxylic acids. Results showed an abundance of formic and butyric acid formation at or near the same concentration levels as formaldehyde and other aldehydes.
Technical Paper

Penn State FutureTruck Hybrid Electric Vehicle: Light-Duty Diesel Exhaust Emission Control System to Meet ULEV Emissions Standard

2005-01-24
2005-01-3877
Two of the goals of the Penn State FutureTruck project were to reduce the emissions of the hybrid electric Ford Explorer to ULEV or lower, and improve the fuel economy by 25% over the stock vehicle. The hybrid electric vehicle system is powered with a 103kW 2.5L Detroit Diesel engine which operates with a fuel blend consisting of ultra-low-sulfur diesel and biodiesel (35%). Lower emissions are inherently achieved by the use of biodiesel. Additionally, the engine was fitted with a series of aftertreatment devices in an effort to achieve the low emissions standards. Vehicle testing has shown a gasoline-equivalent fuel economy improvement of approximately 22%, a reduction in greenhouse gas emissions by approximately 38%, and meeting or exceeding stock emissions numbers in all other categories through the use of an advanced catalyst and control strategy.
Technical Paper

Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus

2003-03-03
2003-01-0756
Dimethyl Ether (DME) is a potential ultra-clean diesel fuel. Its unique characteristics require special handling and accommodation of its low viscosity and low lubricity. In this project, DME was blended with diesel fuel to provide sufficient viscosity and lubricity to permit operation of a 7.3 liter turbodiesel engine in a campus shuttle bus with minimal modification of the fuel injection system. A pressurized fuel delivery system was added to the existing common rail injection system on the engine, allowing the DME-diesel fuel blend to be circulated through the rail at pressures above 200 psig keeping the DME in the liquid state. Fuel exiting the rail is cooled by finned tubed heat exchangers and recirculated to the rail using a gear pump. A modified LPG tank (for use on recreational vehicles) stores the DME- diesel fuel blend onboard the shuttle bus.
Technical Paper

Behavior of a Diesel Injection System with Biodiesel Fuel

2003-03-03
2003-01-1039
Biodiesel fuels are widely known to yield an increase in NOx emissions in many diesel engines. It has been suggested that the increase in NOx is due to injection timing differences caused by the low compressibility of biodiesel. In this work, comparisons of injection timing and duration were performed for diesel fuel and a range of biodiesel blends (B20 to B100). The fuel injector on a 4-stroke, single-cylinder, four horsepower, air-cooled, direct injection diesel engine was positioned in a spray chamber while the engine was motored and fuel was delivered to the injector by the fuel pump on the engine. Spray visualization and quantification of injection timing were performed in the spray chamber using an engine videoscope, light attenuation from a HeNe laser and fuel line pressure, and were synchronized to crank shaft position.
Technical Paper

Integration of WAVE and ADVISOR Simulations for Optimization of a Hybrid Electric Sport Utility Vehicle

2002-10-21
2002-01-2856
Two widely available engine and hybrid electric vehicle (HEV) simulation packages have been integrated to reduce fuel consumption and pollutant emissions for a hybrid electric sport utility vehicle. WAVE, a one-dimensional engine analysis tool available from Ricardo Software, was used to model a 2.5L 103 kW Detroit Diesel engine. This model was validated against engine performance and emissions data obtained from testing in a combustion laboratory. ADVISOR, an HEV simulation software developed by the National Renewable Energy Laboratory in partnership with the Department of Energy (DOE), was used to model a 2002 Ford Explorer that is being converted into an HEV by the Penn State University FutureTruck team. By integrating the output file from WAVE as the input engine data file for ADVISOR, one can predict the effect of changes in engine parameters on vehicle emissions, fuel consumption, and power requirements for specified drive cycles.
Technical Paper

A Comparison of Some Biodegradable Hydraulic Fluids and Engine Oils

2002-03-19
2002-01-1498
Environmentally friendly fuels and lubricants research on hydraulic fluids, engine oils, greases and industrial applications is of interest to government agencies and manufacturers of equipment, engines and vehicles. The key to increasing the use of renewable natural resources is developing fluids of equivalent performance to petroleum base products, at an acceptable product cost. The well known drawbacks of vegetable oils are oxidation stability and low temperature properties. This study compares commercial fluids and laboratory formulations as to their rheological properties and uses different approaches to solve both the low temperature and the oxidative stability problems. Frictions and wear characteristics of the fluids are evaluated and several fluids are compared laboratory bench tests.
Technical Paper

Performance and Emissions Characteristics of an LPG Direct Injection Diesel Engines

2002-03-04
2002-01-0869
In this study, performance and emissions characteristics of an LPG direct injection (DI) engine with a rotary distributor pump were examined by using cetane enhanced LPG fuel developed for diesel engines. Results showed that stable engine operation was possible for a wide range of engine loads. Also, engine output power with cetane enhanced LPG was comparable to diesel fuel operation. Exhaust emissions measurements showed NOx and smoke could be reduced with the cetane enhanced LPG fuel. Experimental model vehicle with an in-line plunger pump has received its license plate in June 2000 and started high-speed tests on a test course. It has already been operated more than 15,000 km without any major failure. Another, experimental model vehicle with a rotary distributor pump was developed and received its license plate to operate on public roads.
Technical Paper

Emission Characteristics of a Navistar 7.3L Turbodiesel Fueled with Blends of Dimethyl Ether and Diesel Fuel

2001-09-24
2001-01-3626
Several oxygenates have been proposed and tested for use with diesel fuel as a means of reducing exhaust emissions. This paper examines dimethyl ether (DME), which can be produced in many ways including via Air Products and Chemicals, Inc's Liquid Phase Technology (LPDME ™). Modest additions of DME into diesel fuel (2 wt.% oxygen) showed reductions in particulate matter emissions, but the previous data reported by the author from a multicylinder Navistar 7.3L Turbodiesel engine were scattered. In this study, experiments were performed on a multi-cylinder Navistar 7.3L Turbodiesel engine to repeatably confirm and extend the observations from the earlier studies. This is an important step in not only showing that the fuel does perform well in an engine with minor modifications to the fuel system, but also showing that DME can give consistent, significant results in lowering emissions.
Technical Paper

A Spark Ignited Engine and Flow Reactor Study of the Effect of an Organic Fuel Additive on Hydrocarbon and Nox Emissions

1998-05-04
981455
An experimental study was conducted to determine if an organic fuel additive could reduce engine out hydrocarbon and NOx emissions. A production four cylinder spark ignited engine with throttle body fuel injection was used for the study. A full boiling range base fuel, an additized base fuel, a base fuel with methyl tertiary butyl ether (MTBE) and a base fuel with MTBE and additive were used in the engine tests. Additive concentration was 1/2% by mass. Hydrocarbon and NOx measurements were recorded for 11 load/speed conditions. Hydrocarbon speciation data was taken at two of these conditions. The data from the experiments was analyzed in a pair-wise fashion for the fuels with and without the additive to determine whether statistically significant changes occurred.
Technical Paper

An Application of the Carson Cruise Optimum Airspeed-A Compromise Between Speed and Efficiency

1985-04-01
850867
It is well known that, for propeller-driven airplanes, maximum fuel economy occurs at maximum L/D ratio. It has been shown that, while the speed for maximum L/D yields the least fuel consumed per unit of distance, there is also a speed for the least fuel per unit of velocity, essentially, the best compromise between speed and fuel economy. This paper presents a simple method to predict this optimum airspeed in terms of calibrated airspeed. In this form, it is only a function of gross weight and could easily be made available in operating handbooks in the form of two-dimensional charts. It is shown that the optimum airspeeds for the range of normal operating gross weights requires fairly normal cruise power settings. The study further describes a simple, straightforward method of arriving at the relationship of cruise optimum airspeed in terms of maximum L/D speed.
Technical Paper

Single-Cylinder Diesel Engine Study of Several Shale and Coal-Derived Fuels

1984-10-01
841333
Several synthetic fuels derived from shale and coal were evaluated with respect to a reference petroleum-based Diesel fuel. Tests conducted using a single-cylinder DI Diesel engine were designed to quantitatively compare the fuels on the basis of performance, combustion characteristics, gas-phase emissions, particulate emissions, and biological activity of the solid phase soluble organic fraction. The biological activity was assessed using the Ames Salmonella typhimurium test. The shale fuels studied were a Paraho marine Diesel fuel and a light shale oil condensate from the Logan Wash in situ retorting operation. The coal liquids, Solvent Refined Coal-II and Exxon Donor Solvent, could not be run neat; therefore, they were blended 20% and 40% by volume with the certified DF-2 baseline fuel. Of the synthetic fuels tested, only the Paraho marine Diesel fuel exhibited the qualities of a good finished Diesel fuel.
Technical Paper

Lean Combustion of Methanol-Gasoline Blends in a Single Cylinder SI Engine

1975-02-01
750698
Blends of up to 40% by volume methanol in a methanol-gasoline fuel blend were supplied to a single cylinder engine operating under controlled conditions. The following effects are reported as the methanol concentration increases. The lean misfire limit is extended 0.04 Ø by using a blend containing 40% methanol compared to the base fuel. It is also noted that the lean misfire limit does not vary until a blend containing greater than 20% methanol was used. Torque and thermal efficiency increase significantly. Percent by volume concentrations of carbon monoxide, carbon dioxide and oxides of nitrogen do not change, although oxides of nitrogen reported as mass per power output per hour decrease.
Technical Paper

World Survey of Small Engine Developments

1965-02-01
650083
Lightweight, aircooled engines of 10 hp or less manufactured in Europe and Japan are surveyed. An attempt is made to isolate general trends. Newer engines and their main features are described. Both gasoline and diesel engines (rated at 300 rpm or above) are included in the survey. It is found that there are no startling novelties with the exception of theSachs-Wankelengine which, however, is not yet in production, but there are a number of interesting solutions to conventional problems.
Technical Paper

FUMIGATION KILLS SMOKE - - IMPROVES DIESEL PERFORMANCE

1958-01-01
580058
THE effects of introducing a portion of the fuel charge of a diesel engine into the intake manifold in the form of a fine mist are reported in this paper. Laboratory tests with swirl-chamber and open-chamber engines resulted in smoke reduction up to 80%, increase in smoke-limited power output up to 18.5%, decrease in specific fuel consumption up to 9.8%, shorter ignition lag, lower maximum rate of pressure rise, and smoother operation. In running on good-grade diesel fuel approximately 15% of the main fuel proved to be as good a manifold fuel as any. It was also found that a diesel engine could operate satisfactorily on substandard fuels down to zero cetane number when fumigation was employed. Maximum benefits from fumigation accrued when inducting fuel in the form of a very fine mist (not over 4 microns) produced by Micro-Fog. As yet an economical method of producing this finely atomized fuel spray in large quantities has not been found.
X