Refine Your Search

Topic

Author

Search Results

Technical Paper

An External Explosive Airbag Model for an Innovative Inflatable Bumper (I-bumper) Concept

2008-04-14
2008-01-0508
In the I-bumper (inflatable bumper) concept [1], two explosive airbags are released just before the main body-to-body crash in order to absorb the kinetic energy of colliding vehicles. The release also actuates other components in the I-bumper, including a movable bumper and an energy absorption morphing lattice structure. A small explosive charge will be used to deploy the airbag. A conventional airbag model will be used to reduce the crash energy in a controlled manner and reduce the peak impact force. An analytic model of the explosive airbag is developed in this paper for the I-bumper system and for its optimal design, while the complete system design (I-bumper) will be discussed in a separate paper. Analytical formulations for an explosive airbag will be developed and major design variables will be identified. These are used to determine the required amount of explosive and predict airbag behavior, as well to predict their impact on the I-bumper system.
Technical Paper

Component Mode Synthesis for Substructures with Non-Matching Interfaces

2007-05-15
2007-01-2333
When performing vibration analysis of complex vehicle structures, it is often important to be able to evaluate the effects of design changes in one or more substructures (e.g., for design optimization). It may also be convenient to allow different components to be modeled independently by different groups or organizations. For both cases, it is inevitable that some substructures will have non-matching finite element meshes at the interface where they are physically connected. Thus, a key challenge is to be able to handle the dynamic assembly of components with non-matching meshes and the subsequent global vibration analysis in a systematic and efficient manner. To tackle this problem, the enhancement of component mode synthesis methods for handling finite element models partitioned into non-matching substructures is considered in this paper. Some existing methods are reviewed, and new methods are developed.
Technical Paper

Validation of a Hybrid Finite Element Formulation for Mid-Frequency Analysis of Vehicle Structures

2007-05-15
2007-01-2303
The hybrid Finite Element Analysis (hybrid FEA) has been developed for performing structure-borne computations in automotive vehicle structures [1, 2 and 3]. The hybrid FEA method combines conventional FEA with Energy FEA (EFEA). Conventional FEA models are employed for modeling the behavior of the stiff members in a system. Appropriate damping and spring or mass elements are introduced in the connections between stiff and flexible members in order to capture the presence of the flexible members during the analyses of the stiff ones. The component mode synthesis method is combined with analytical solutions for determining the driving point conductance at joints between stiff and flexible members and for defining the properties of the concentrated elements which represent the flexible members when analyzing the stiff components.
Technical Paper

Algorithmic Maintenance of a Diesel Engine Electronic Fuel Feed Controller by Criterion of the Content of Soot in Exhaust Gas

2007-04-16
2007-01-0973
The feature of offered algorithm is that it allows, without record and analysis of the display diagram, to estimate a running cycle of a diesel engine parameters which characterize ecological and economic performances. The mathematical model described in report allows to determine connection of coefficient of filling, pressure and temperature of air boost, factor of excess of air with effectiveness ratio of combustion and contents of soot in exhaust gas and to take into account this connection at a choice initial data for control fuel feed or for elaboration of diesel engine dynamic model. The algorithm incorporated, for example, in the microcontroller of an electronic fuel feed controller allows analyzing the sensors data and theoretically determine of smoke amount in the exhaust gases for chosen cycle of fuel feed. The restriction of smoke is possible by criterion dD/dGT, where D - contents of soot in exhaust gas and GT - fuel cycle submission under the program-adaptive schema.
Technical Paper

Posture and Motion Prediction: Perspectives for Unconstrained Head Movements

2006-07-04
2006-01-2330
The relationship between motion and posture was investigated from the kinematics of unconstrained head movements. Head movements for visual gazing exhibited an initial component whose amplitude does not exceed 20.3° for target eccentricity up to 120°. This component was truncated by subsequent corrective movements whose occurrence generally increases with target eccentricity, although with a large variability (R2 ≤ 0.46). The head is finally stabilized at 72% of target eccentricity (R2 ≥ 0.92). These results indicate that the final head posture can be achieved through a number of loosely-programmed kinematic variations. Based on these results, unconstrained head movements were simulated, within the context of application to posture prediction for estimation of the visual field.
Technical Paper

Strength and Balance Guided Posture Selection during a Battery Maintenance Task

2006-04-03
2006-01-0698
Posture selection during standing exertions is a complex process involving tradeoffs between muscle strength and balance. Bodyweight utilization reduces the amount of upper-body strength required to perform a high force push/pull exertion but shifts the center-of-gravity towards the limits of the functional stability region. Thus balance constraints limit the extent to which bodyweight can be used to generate push/pull forces. This paper examines a two-handed sagittal plane pulling exertion performed during a battery maintenance task on a member of the family of medium-sized tactical vehicles (FMTV). Percent capable strength predictions and functional balance capabilities were determined for various two-handed pulling postures using the University of Michigan's 3D Static Strength Prediction Program (3DSSPP). Through this simulation study, preferred postures that minimize joint torques while maintaining balance were identified.
Technical Paper

Distance Cues and Fields of View in Rear Vision Systems

2006-04-03
2006-01-0947
The effects of image size on perceived distance have been of concern for convex rearview mirrors as well as camera-based rear vision systems. We suggest that the importance of image size is limited to cases-such as current rearview mirrors-in which the field of view is small. With larger, richer fields of view it is likely that other distance cues will dominate image size, thereby substantially diminishing the concern that distortions of size will result in distortions of distance perception. We report results from an experiment performed in a driving simulator, with static simulated rearward images, in which subjects were asked to make judgments about the distance to a rearward vehicle. The images showed a field of view substantially wider than provided by any of the individual rearview mirrors in current systems. The field of view was 38 degrees wide and was presented on displays that were either 16.7 or 8.5 degrees wide, thus minifying images by factors of 0.44 or 0.22.
Technical Paper

Crank-Angle Resolved Imaging of Fuel Distribution, Ignition and Combustion in a Direct-Injection Spark-Ignition Engine

2005-10-24
2005-01-3753
A combination of imaging techniques for investigations of highly transient processes and cyclic variations in internal combustion engines is presented. The single high-speed camera setup uses a CMOS camera combined with a two-stage image-intensifier and two excimer lasers. Fuel mixing, ignition and combustion were monitored via planar laser induced fluorescence imaging of toluene as a tracer that was added to iso-octane in combination with the simultaneous recording of light emission from the spark plasma and OH* chemiluminescence of the developing flame. Image frame rates of 12 kHz for hundreds of cycles were achieved. Application to misfire events in a spray-guided gasoline direct-injection engine is described to illustrate the merits of the technique.
Technical Paper

Application of a Hybrid Finite Element Formulation for Analyzing the Structure-Borne Noise in a Body-In-White

2005-05-16
2005-01-2421
A hybrid finite element formulation for analyzing flexible plates connected to stiff frame was developed. The excitation was considered to be applied on the stiff members. Conventional FEA models were employed for modeling the behavior of the stiff members in a system. Appropriate damping elements were introduced in the connections between stiff and flexible members in order to capture the presence of the flexible members during the analyses of the stiff ones. Once the vibration of the stiff members and the amount of power dissipated at the damping elements was identified, an EFEA analysis was performed in order to determine the amount of vibrational energy in the flexible members. The hybrid FEA is applied to a Body-In-White (BIW). The results of the hybrid FEA are compared with results from very dense conventional finite element analyses.
Technical Paper

Using Vehicle Dynamics Simulation as a Teaching Tool in Automotive Engineering Courses

2005-04-11
2005-01-1795
Some of the best teaching methods are laboratory courses in which students experience application of the principles being presented. Preparing young engineering students for a career in the automotive industry challenges us to provide comparable opportunities to explore the dynamic performance of motor vehicles in a controlled environment. Today we are fortunate to have accurate and easy-to-use software programs making it practical for students to simulate the performance of motor vehicles on “virtual” proving grounds. At the University of Michigan the CarSim® vehicle dynamics simulation program has been introduced as such a tool to augment the learning experience. The software is used in the Automotive Engineering course to supplement homework exercises analyzing acceleration, braking, aerodynamics, and cornering performance. This paper provides an overview of the use of simulation in this setting.
Technical Paper

Driver Workload for Rear-Vision Systems With Single Versus Multiple Display Locations

2005-04-11
2005-01-0445
Advances in camera and display technology have increased interest in using camera-based systems for all rear-vision functions. The flexibility of camera-based systems is unprecedented, and raises the possibility of providing drivers with fields of view that are very different from, and potentially much better than, those of conventional rearview mirrors. Current fields of view are based on a combination of driver needs and the practical constraints of mirror systems. In order to make the best use of the greater flexibility offered by cameras, a reassessment of drivers' needs for rear vision is needed. A full reassessment will require consideration of many factors. This paper offers a preliminary analysis of one of those factors: the visual workload involved in using rear-vision systems with single versus multiple displays.
Technical Paper

Transient Spray Cone Angles in Pressure-Swirl Injector Sprays

2004-10-25
2004-01-2939
The transient cone angle of pressure swirl sprays from injectors intended for use in gasoline direct injection engines was measured from 2D Mie scattering images. A variety of injectors with varying nominal cone angle and flow rate were investigated. The general cone angle behavior was found to correlate well qualitatively with the measured fuel line pressure and was affected by the different injector specifications. Experimentally measured modulations in cone angle and injection pressure were forced on a comprehensive spray simulation to understand the sensitivity of pulsating injector boundary conditions on general spray structure. Ignoring the nozzle fluctuations led to a computed spray shape that inadequately replicated the experimental images; hence, demonstrating the importance of quantifying the injector boundary conditions when characterizing a spray using high-fidelity simulation tools.
Technical Paper

Impact of Fluorescence Tracers on Combustion Performance in Optical Engine Experiments

2004-10-25
2004-01-2975
For applications of planar laser induced fluorescence (PLIF) to measure the fuel or equivalence ratio distributions in internal combustion (IC) engines it is typically assumed that the addition of a fluorescence tracer to a base fuel does not alter the combustion performance. We have investigated the impact on combustion performance through the addition of various amounts of 3-pentanone or toluene to iso-octane fuel. Correlations between equivalence ratio for a range of fuel/tracer mixtures and engine parameters, like peak pressure, location of peak pressure, indicated mean effective pressure (IMEP), and peak burn rate are discussed for data obtained in a spark-ignition direct-injection (SIDI) gasoline engine operated with near homogeneous charge. For typical tracer concentrations the impact on combustion performance is mostly negligible.
Technical Paper

Analysis and Redesign of Battery Handling using Jack™ and HUMOSIM Motions

2004-06-15
2004-01-2145
The evaluation of maintenance tasks is increasingly important in the design and redesign of many industrial operations including vehicles. The weight of subsystems can be extreme and often tools are developed to abate the ergonomic risks commonly associated with such tasks, while others are unfortunately overlooked. We evaluated a member of the family of medium-sized tactical vehicles (FMTV) and chose the battery handling from a list of previously addressed concerns regarding the vehicle. Particularly in larger vehicles, similar to those analyzed in this paper, batteries may exceed 35 kg (77 lbs). The motions required to remove these batteries were simulated using motion prediction modules from the Human Motion Simulation (HUMOSIM) laboratory at the University of Michigan. These motions were visualized in UGS PLM Solutions' Jack™ and analyzed with the embedded 3-D Static Strength Prediction program.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Effects of Impact Velocity on Crush Behavior of Honeycomb Specimens

2004-03-08
2004-01-0245
Effects of impact velocity on the crush behavior of aluminum 5052-H38 honeycomb specimens are investigated by experiments. An impact test machine using pressurized nitrogen was designed to perform dynamic crush tests. A test fixture was designed such that inclined loads can be applied to honeycomb specimens in dynamic crush tests. The results of dynamic crush tests indicate that the effects of impact velocity on the normal and inclined crush strengths are significant. The trends of the inclined crush strengths for specimens with different in-plane orientation angles as functions of impact velocity are very similar to that of the normal crush strength. Experimental results show similar progressive folding mechanisms for honeycomb specimens under pure compressive and inclined loads. Under inclined loads, the inclined stacking patterns were observed. The inclined stacking patterns are due to the asymmetric locations of the horizontal plastic hinge lines.
Technical Paper

The Roles of Camera-Based Rear Vision Systems and Object-Detection Systems: Inferences from Crash Data

2004-03-08
2004-01-1758
Advances in electronic countermeasures for lane-change crashes, including both camera-based rear vision systems and object-detection systems, have provided more options for meeting driver needs than were previously available with rearview mirrors. To some extent, human factors principles can be used to determine what countermeasures would best meet driver needs. However, it is also important to examine sets of crash data as closely as possible for the information they may provide. We review previous analyses of crash data and attempt to reconcile the implications of these analyses with each other as well as with general human factors principles. We argue that the data seem to indicate that the contribution of blind zones to lane-change crashes is substantial.
Technical Paper

Simulating Complex Manual Handling Motions Via Motion Modification: Performance Evaluation of Motion Modification Algorithm

2003-06-17
2003-01-2227
Simulation of human motions in virtual environments is an essential component of human CAD (Computer-aided Design) systems. In our earlier SAE papers, we introduced a novel motion simulation approach termed Memory-based Motion Simulation (MBMS). MBMS utilizes existing motion databases and predicts novel motions by modifying existing ‘root’ motions through the use of the motion modification algorithm. MBMS overcomes some limitations of existing motion simulation models, as 1) it simulates different types of motions on a single, unified framework, 2) it simulates motions based on alternative movement techniques, and 3) like real humans, it can learn new movement skills continually over time. The current study evaluates the prediction accuracy of MBMS to prove its utility as a predictive tool for computer-aided ergonomics. A total of 627 whole-body one-handed load transfer motions predicted by the algorithm are compared with actual human motions obtained in a motion capture experiment.
Technical Paper

Redesigning Workstations Utilizing Motion Modification Algorithm

2003-06-17
2003-01-2195
Workstation design is one of the most essential components of proactive ergonomics, and digital human models have gained increasing popularity in the analysis and design of current and future workstations (Chaffin 2001). Using digital human technology, it is possible to simulate interactions between humans and current or planned workstations, and conduct quantitative ergonomic analyses based on realistic human postures and motions. Motion capture has served as the primary means by which to acquire and visualize human motions in a digital environment. However, motion capture only provides motions for a specific person performing specific tasks. Albeit useful, at best this allows for the analysis of current or mocked-up workstations only. The ability to subsequently modify these motions is required to efficiently evaluate alternative design possibilities and thus improve design layouts.
Technical Paper

Failure Mechanisms of Sandwich Specimens With Epoxy Foam Cores Under Bending Conditions

2003-03-03
2003-01-0327
Sandwich specimens with DP590 steel face sheets and structural epoxy foam cores are investigated under three-point bending conditions. Experimental results indicate that the maximum loads correspond to extensive cracking in the foam cores. Finite element simulations of the bending tests are also performed to understand the failure mechanisms of the epoxy foams. In these simulations, the plastic behavior of the steel face sheets is modeled by the Mises yield criterion with consideration of plastic strain hardening. A pressure sensitive yield criterion is used to model the plastic behavior of the epoxy foam cores. The epoxy foams are idealized to follow an elastic perfectly plastic behavior. The simulation results indicate that the load-displacement responses of some sandwich specimens agree with the experimental results.
X