Refine Your Search

Topic

Search Results

Journal Article

A Simulation Study on the Transient Behavior of a Gasoline Direct Injection Engine under Cold Start Conditions

2022-03-29
2022-01-0401
The cold start process is critical to control the emissions in a gasoline direct injection (GDI) engine. However, the optimization is very challenging due to the transient behavior of the engine cold start. A series of engine simulations using CONVERGE CFD™ were carried out to show the detailed process in the very first firing event of a cold start. The engine operating parameters used in the simulations, such as the transient engine speed and the fuel rail pressure (FRP), came from companion experiments. The cylinder pressure traces from the simulations were compared with experiments to help validate the simulation model. The effects of variation of the transient parameters on in-cylinder mixture distribution and combustion are presented, including the effects of the rapidly changing engine speed, the slowly vaporized fuel due to the cold walls, and the low FRP during the first firing cycle of a 4-cylinder engine. Comparison was also made with non-transient steady state operation.
Technical Paper

A Full-Cycle Multi-Zone Quasi-Dimensional Direct Injection Diesel Engine Model Based on a Conceptual Model Developed from Imaging Experiments

2017-03-28
2017-01-0537
A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
Technical Paper

Coastdown Coefficient Analysis of Heavy-Duty Vehicles and Application to the Examination of the Effects of Grade and Other Parameters on Fuel Consumption

2012-09-24
2012-01-2051
To perform coastdown tests on heavy-duty trucks, both long acceleration and coasting distances are required. It is very difficult to find long flat stretches of road to conduct these tests; for a Class 8 truck loaded to 80,000 lb, about 7 miles of road is needed to complete the coastdown tests. In the present study, a method for obtaining coastdown coefficients from data taken on a road of variable grade is presented. To this end, a computer code was written to provide a fast solution for the coastdown coefficients. Class 7 and Class 8 trucks were tested with three different weight configurations: empty, “cubed-out” (fully loaded but with a payload of moderate density), and “weighed-out” (loaded to the maximum permissible weight).
Technical Paper

Development of the Texas Drayage Truck Cycle and Its Use to Determine the Effects of Low Rolling Resistance Tires on the NOX Emissions and Fuel Economy

2009-04-20
2009-01-0943
Trucks operating in inter-modal (drayage) operation in and around port and rail terminals, are responsible for a large proportion of the emissions of NOX, which are problematic for the air quality of the Houston and Dallas/Ft. Worth metro areas. A standard test cycle, called the Texas Dray Truck Cycle, was developed to represent the operation of heavy-duty diesel trucks in dray operations. The test cycle reflects the substantial time spent at idle (~45%) and the high intensity of the on-road portions. This test cycle was then used in the SAE J1321 test protocol to evaluate the effect on fuel consumption and NOX emissions of retrofitting dray trucks with light-weight, low-rolling resistance wide-single tires. In on-track testing, a reduction in fuel consumption of 8.7% was seen, and NOX emissions were reduced by 3.8% with the wide single tires compared to the conventional tires.
Technical Paper

Further Development of an Electronic Particulate Matter Sensor and Its Application to Diesel Engine Transients

2008-04-14
2008-01-1065
This paper presents the latest developments in the design and performance of an electronic particulate matter (PM) sensor developed at The University of Texas at Austin (UT) and suitable, with further development, for applications in active engine control of PM emissions. The sensor detects the carbonaceous mass component of PM in the exhaust and has a time-resolution less than 20 (ms), allowing PM levels to be quantified for engine transients. Sample measurements made with the sensor in the exhaust of a single-cylinder light duty diesel engine are presented for both steady-state and transient operations: a steady-state correlation with gravimetric filter measurements is presented, and the sensor response to rapid increases in PM emission during engine transients is shown for several different tip-in (momentary increases in fuel delivery) conditions.
Technical Paper

Improving Heavy-Duty Engine Efficiency and Durability: The Rotating Liner Engine

2005-04-11
2005-01-1653
The Rotating Linear Engine (RLE) derives improved fuel efficiency and decreased maintenance costs via a unique lubrication design, which decreases piston assembly friction and the associated wear for heavy-duty natural gas and diesel engines. The piston ring friction exhibited on current engines accounts for 1% of total US energy consumption. The RLE is expected to reduce this friction by 50-70%, an expectation supported by hot motoring and tear-down tests on the UT single cylinder RLE prototype. Current engines have stationary liners where the oil film thins near the ends of the stroke, resulting in metal-to-metal contact. This metal-to-metal contact is the major source of both engine friction and wear, especially at high load. The RLE maintains an oil film between the piston rings and liner throughout the piston stroke due to liner rotation. This assumption has also been confirmed by recent testing of the single cylinder RLE prototype.
Technical Paper

Engine Friction Reduction Through Liner Rotation

2005-04-11
2005-01-1652
Cylinder liner rotation (Rotating Liner Engine, RLE) is a new concept for reducing piston assembly friction in the internal combustion engine. The purpose of the RLE is to reduce or eliminate the occurrence of boundary and mixed lubrication friction in the piston assembly (specifically, the rings and skirt). This paper reports the results of experiments to quantify the potential of the RLE. A 2.3 L GM Quad 4 SI engine was converted to single cylinder operation and modified for cylinder liner rotation. To allow examination of the effects of liner rotational speed, the rotating liner is driven by an electric motor. A torque cell in the motor output shaft is used to measure the torque required to rotate the liner. The hot motoring method was used to compare the friction loss between the baseline engine and the rotating liner engine. Additionally, hot motoring tear-down tests were used to measure the contribution of each engine component to the total friction torque.
Technical Paper

Camshaft Roller Chain Drive with Reduced Meshing Impact Noise Levels

2003-05-05
2003-01-1666
The work presented in this paper outlines the design and development of a new roller chain sprocket tooth form for engine camshaft drives in an effort to reduce the noise levels related to chain-sprocket meshing. The crankshaft sprocket also incorporated inclined plane Nitrile damper rings to further reduce meshing impact noise levels. Previous experimental studies have shown that roller impact during meshing is a dominant noise source in roller chain drives. Noise evaluations were conducted for several camshaft drive configurations on a 4-cylinder DOHC automotive engine in a semi-anechoic dynamometer facility. The tests included measurements of meshing frequency sound power levels and overall sound power levels. This firing engine noise and vibration experiment was done to compare the noise levels of the asymmetrical sprocket tooth profile to that of a standard ISO sprocket tooth profile.
Technical Paper

Performance of Anti-Lock Braking System Equipped Passenger Vehicles - Part I: Braking as a Function of Brake Pedal Application Force

2002-03-04
2002-01-0304
This paper presents the results of original research conducted to evaluate the braking characteristics of passenger vehicles equipped with anti-lock braking systems (ABS) as a function of brake-pedal application force. The conditions studied in this paper are for braking on a dry, level roadway without any steering input. The objective of the paper is to study the effect of brake-pedal application force on the braking systems of common vehicles currently in-use. Comparisons are made between ABS and locked-wheel braking for each vehicle. The subject of this paper is part of the general topic of passenger vehicle dynamics and stability. Knowledge of how a vehicle performs under a variety of braking conditions is important for a variety of applications such as 1) intelligent vehicle highway systems, 2) vehicle stability and control, 3) vehicle dynamics, and 4) accident reconstruction.
Technical Paper

Performance of anti-lock Braking System Equipped Passenger Vehicles - Part II: Braking as a Function of Initial Vehicle Speed in Braking Maneuver

2002-03-04
2002-01-0307
This paper presents the results of original research conducted to evaluate the braking characteristics of passenger vehicles equipped with anti-lock braking systems (ABS) as a function of vehicle speed at the beginning of a braking maneuver. The conditions studied in this paper are for braking on a dry, level roadway without any steering input. The objective of the paper is to study the effect of vehicle speed on the braking systems of common vehicles currently in-use. Comparisons are made between ABS and locked-wheel braking for each vehicle. The subject of this paper is part of the general topic of passenger vehicle dynamics and stability. Knowledge of how a vehicle performs under a variety of braking conditions is important for a variety of applications such as 1) intelligent vehicle highway systems, 2) vehicle stability and control, 3) vehicle dynamics, and 4) accident reconstruction.
Technical Paper

Performance of Anti-Lock Braking System Equipped Passenger Vehicles - Part III: Braking as a Function of Tire Inflation Pressure

2002-03-04
2002-01-0306
This paper presents the results of original research conducted to evaluate the braking characteristics of passenger vehicles equipped with anti-lock braking systems (ABS) as a function of tire inflation pressure. The conditions studied in this paper are for braking on a dry, level roadway without any steering input. The objective of the paper is to study the effect of tire inflation pressure on the braking systems of common vehicles currently in-use. Comparisons are made between ABS and locked-wheel braking for each vehicle. The subject of this paper is part of the general topic of passenger vehicle dynamics and stability. Knowledge of how a vehicle performs under a variety of braking conditions is important for a variety of applications such as 1) intelligent vehicle highway systems, 2) vehicle stability and control, 3) vehicle dynamics, and 4) accident reconstruction.
Technical Paper

Particulate Characterization of a DISI Research Engine using a Nephelometer and In-Cylinder Visualization

2001-05-07
2001-01-1976
A nephelometer system was developed to characterize engine particulate emissions from DISI engines. Results were correlated with images showing the location and history of particulates in the cylinder of an optical engine. The nephelometer's operation is based upon the dependence of scattered laser light on particulate size from a flow sampled from the exhaust of an engine. The nephelometer simultaneously measured the scattered light from angles of 20° to 160° from the forward scattering direction in 4° increments. The angular scattering measurements were then compared with calculations using a Mie scattering code to infer information regarding particulate size. Measurements of particulate mass were made based upon a correlation developed between the scattered light intensity and particulate mass samples trapped in a 0.2-micron filter. Measurements were made in a direct injection single-cylinder spark ignition research engine having a transparent quartz cylinder.
Technical Paper

Effects of Air and Road Surface Temperature on Tire Pavement Noise on an ISO 10844 Surface

2001-04-30
2001-01-1598
Sound pressure level (SPL) measurements of vehicle coast-by runs of a passenger vehicle were performed across a range of temperatures. A controlled test track was used for the runs with six different sets of tires. A small but significant reduction of noise level with positive temperature increases was observed for some but not all tires. The reduction was evident in two of the tires at 53 kph and five of the tires at 80 kph. The SPL of the other tires showed little or no sensitivity to temperature. Frequency analysis of the tire noise showed that noise content above 1000 Hz is most affected by temperature change and noise in the range of 1200 to 2000 Hz is particularly sensitive to temperature changes. However, differences in SPL due to speed and tire type were much greater than that due to temperature
Technical Paper

Refinement of a Dedicated E85 1999 Silverado with Emphasis on Cold Start and Cold Drivability

2001-03-05
2001-01-0679
The University of Texas 2000 Ethanol Vehicle Challenge team remains focused on cold start, cold drivability, fuel economy, and emissions reduction for our 2000 Ethanol Vehicle Challenge entry. We used the stock PCM for all control functions except control of an innovative cold-start system our team designed. The primary modifications for improved emissions control involved ceramic coating of the exhaust manifolds, use of close-coupled ethanol-specific catalysts, use of a moddified version of the California Emissions Calibrated PCM, and our cold-start system that eliminates the need to overfuel the engine at the beginning of the FTP. Additionally, we eliminated EGR at high load to improve power density. Major modifications, such as increasing the compression ratio or pressure boosting, were eliminated from consideration due to cost, complexity, reliability, or emissions penalties.
Technical Paper

Conversion of a 1999 Silverado to Dedicated E85 with Emphasis on Cold Start and Cold Driveability

2000-03-06
2000-01-0590
The University of Texas Ethanol Vehicle Challenge team focused upon cold start/driveability, fuel economy, and emissions reduction for our 1999 Ethanol Vehicle Challenge entry. We replaced or coated all fuel system components that were not ethanol compatible. We used the stock PCM for all control functions except control of a novel cold-start system our team designed. The primary modifications for improved emissions control involved ceramic coating of the exhaust manifolds, use of close-coupled ethanol-specific catalysts, increased EGR for the operating conditions of the five longest cruises on the FTP, and our cold-start system that eliminates the need to overfuel the engine at the beginning of the FTP. This EGR control scheme should also benefit urban fuel economy. Additionally, we eliminated EGR at high load to improve power density.
Technical Paper

Practical Considerations for an E85-Fueled Vehicle Conversion

1999-10-25
1999-01-3517
An original equipment gasoline-fueled 1999 Chevrolet Silverado pickup with a 5.3-liter, V8 engine was converted to operate on E85 (85% denatured ethanol and 15% gasoline). The simplest conversion of a gasoline-fueled vehicle to E85 requires modification to the fuel system, including use of components that are compatible with ethanol and fuel injectors that provide sufficient E85 for the stock engine control module (ECM) to effectively control engine operation. To retain the stock ECM, higher flow rate fuel injectors that provide approximately 40% more E85 than gasoline are required. With no engine modifications and similar engine control strategies, performance predictions show an approximate 7% torque and power increase for E85 over gasoline. The increase is primarily due to the specific energy differences between E85 and gasoline, although there should be a slight charge cooling benefit for E85 as a result of its higher heat of vaporization.
Technical Paper

Intelligent Estimation of System Parameters for Active Vehicle Suspension Control

1999-03-01
1999-01-0729
Active control of vehicle suspension systems typically relies on linear, time-invariant, lumped-parameter dynamic models. While these models are convenient, nominally accurate, and tractable due to the abundance of linear control techniques, they neglect potentially significant nonlinearities and time-varying dynamics present in real suspension systems. One approach to improving the effectiveness of such linear control applications is to introduce time and spatially-dependent coefficients, making the model adaptable to parameter variations and unmodeled dynamics. In this paper, the authors demonstrate an intelligent parameter estimation approach, using structured artificial neural networks, to continually adapt the lumped parameters of a linear, quarter-car suspension model. Results are presented for simulated and experimental quarter-vehicle suspension system data, and clearly demonstrate the viability of this approach.
Technical Paper

The Effect of In-Cylinder Wall Wetting Location on the HC Emissions from SI Engines

1999-03-01
1999-01-0502
The effect of combustion chamber wall-wetting on the emissions of unburned and partially-burned hydrocarbons (HCs) from gasoline-fueled SI engines was investigated experimentally. A spark-plug mounted directional injection probe was developed to study the fate of liquid fuel which impinges on different surfaces of the combustion chamber, and to quantify its contribution to the HC emissions from direct-injected (DI) and port-fuel injected (PFI) engines. With this probe, a controlled amount of liquid fuel was deposited on a given location within the combustion chamber at a desired crank angle while the engine was operated on pre-mixed LPG. Thus, with this technique, the HC emissions due to in-cylinder wall wetting were studied independently of all other HC sources. Results from these tests show that the location where liquid fuel impinges on the combustion chamber has a very important effect on the resulting HC emissions.
Technical Paper

The Texas Project, Part 4 - Final Results: Emissions and Fuel Economy of CNG and LPG Conversions of Light-Duty Vehicles

1998-10-19
982446
The Texas Project was a multi-year study of aftermarket conversions of a variety of light-duty vehicles to CNG or LPG. Emissions and fuel economy when using these fuels are compared to the results for the same vehicles operating on certification gasoline and Federal Phase 1 RFG. Since 1993, 1,040 tests were conducted on 10 models, totally 86 light-duty vehicles. The potential for each vehicle model/kit combination to attain LEV certification was assessed. Also, comparisons of emissions and fuel economy between converted vehicles when operating on gasoline and nominally identical un-converted gasoline control vehicles were analyzed. Additional evaluations were performed for a subfleet that was subjected to exhaust speciations for operation over the Federal Test Procedure cycle and also for off-cycle tests.
Technical Paper

Development and Validation of an Optimized Emergency Lane-Change Trajectory

1998-02-23
980231
In this paper, functional analysis is employed to develop an ideal path of a vehicle undergoing a limit lane-change maneuver. Inputs to the problem are the lane width, tire-road coefficient of friction and either vehicle velocity or total longitudinal lane-change distance. Vehicle velocity is assumed to be constant. The problem is formulated using the calculus of variations. The solution technique relies on elliptic functions to achieve a closed-form solution. The synthesis of an ideal lane-change trajectory is treated as a minimal-energy-curve optimization problem with prescribed continuity and boundary conditions. The concept of critical speed is employed to limit the maximum curvature of any specified lane-change, thereby ensuring that the synthesized trajectory function describes a path that can be traversed under realistic road conditions. The analytical solution is confirmed by comparison to a numerical solution and a validated 8 degree-of-freedom vehicle model simulation.
X