Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Evaluation of a Design Support Tool Incorporating Sensory Performance Model of Ride Comfort for Conceptual Design of Controlled Suspensions

2024-04-09
2024-01-2292
The objective of this study is to introduce and assess a computational tool designed to facilitate product development via sensory scores, which serve as a quantifiable representation of human sensory experiences. In the context of designing ride comfort performance, the specialized terminology—either technical or sensory—often served as a barrier to comprehension among the diverse set of specialists constituting the multidisciplinary team. In a previous study by the authors introduced a tool that incorporated a model of sensory performance, utilizing sensory scores as universally comprehensible metrics. However, the tool had yet to be appraised by a genuine cross-functional team. In this study, the tool underwent evaluation through a user-testing process involving twenty-five cross-functional team members engaged in the conceptual design phase at an automotive manufacturing company.
Technical Paper

Visualization of Physical / Thermal Evaporation Phenomena with Experimental and PIV-DDM Analysis in Urea-SCR Dosing System of Multi-Phase Flow

2023-09-29
2023-32-0098
This study was visualized by experimental and numerical analysis for the unknown injected droplet phenomena with the multi-phase flow in the Urea-SCR dosing system. Visualization experiments were conducted on the droplet behavior inside the pipe with simulated urea SCR injection system. Although the total number of droplets decreases at gas temperatures of 150°C and 200°C, a significant number of injected droplets remained at the position corresponding to the SCR catalyst. That is physical kinetic energy was found to dominate over thermal evaporation. However, the impingement of droplets into the pipe wall had occurred complex behavior by physical/thermal evaporation, and these droplets weren't on gas airflow at the lower part of the pipe. Furthermore, these actual phenomena were reflected in experimental coefficients for new reduction model analysis instead of CFD.
Technical Paper

A study of Multi-Functional Membrane Filters made of Fine Catalyst Particles

2023-09-29
2023-32-0125
A multi-functional membrane filter was developed through deposition of agglomerated Three-Way Catalyst particles with a size of 1 ~ 2 microns on the conventional bare particulate filter. The filtration efficiency reaches almost 100 % from the beginning of soot trapping with a low pressure drop and both reductions of NO and CO emission were achieved.
Technical Paper

Effect of Working Gas Composition on Combustion and Knocking in Argon Closed-Cycle Hydrogen Engine

2023-09-29
2023-32-0170
In recent years, the automotive industry has been clearly moving toward carbon neutrality, and internal combustion engines that use fossil fuels are becoming unsustainable. On the other hand, hydrogen engines do not emit CO2 during operation, and if the working gas of a hydrogen engine is replaced with argon and oxygen (by removing the produced water and circulating argon), the thermal efficiency can be dramatically improved. However, when the high adiabatic compression temperature of argon is added to the inherent knocking problems of hydrogen engines, the knocking problem becomes even more pronounced, and no effective solution to avoid knocking has been found to date. In this study, the effects of argon, oxygen, and hydrogen concentrations on combustion and power, respectively, were investigated to determine the effects of working gas composition on combustion and knocking, and the control effects of oxygen rich or hydrogen rich on knocking was investigated.
Technical Paper

Clarification of Fuel and Oil Flow Behaviour Around the Piston Rings of Internal Combustion Engines: Visualization of Oil and Fuel Behaviour by Photochromism in Gasoline Engine Under Transient Operating Conditions

2023-09-29
2023-32-0046
Photochromism is a reversible color change phenomenon based on chemical reactions caused by light illumination. In the present study, this technique is applied to visualize the lubricating oil and fuel around the piston rings in the gasoline engine. The oil film was colored with a UV laser and photographed by synchronizing the shutter of a high-speed camera with a flashlight. The color density was evaluated as a value of absorbance, calculated from images taken at two different wavelengths and two different times before and after the coloration. The authors performed photochromism visualization experiments in an engine under motored operation. However, using photochromic dyes that are robust to temperature changes makes it possible to visualize the engine under fired operation. The experiment was conducted mainly by switching to the motored operation for a fixed time between the fired operations.
Technical Paper

Clarification of Fuel and Oil Flow Behavior Around the Piston Rings of Internal Combustion Engines

2023-09-29
2023-32-0047
The mechanism of lubricant dilution by post injection fuel in a diesel engine was investigated. The operating conditions of the engine were changed, and oil was sampled from each part of the piston and the crankcase, and the dilution ratio was analyzed. Also, photochromism was used to visualize the oil and fuel flow. Dilution ratios obtained from oil sampling and photochromism showed the same tendency.
Technical Paper

Research on Super-Lean Burn Spark Ignition Engine with In-Cylinder Water Injection using Gasoline Surrogate Fuels

2023-09-29
2023-32-0055
The combination of super-lean burn spark ignition engine (excess air ratio λ ≈ 2) and in-cylinder water injection (WI) makes it possible to achieve thermal efficiency higher than 50%. Toward future fuel diversification including carbon-neutral fuels, technologies to improve SI engine thermal efficiency applicable to various fuels are required. In this study, the effect of in-cylinder WI on SI engine performance with a compression ratio of 17 and λ = 1.85 is investigated using premium gasoline, 5 components surrogate fuels for premium gasoline (S5H), and for regular gasoline (S5R). In the case of premium gasoline and S5H, spark timing can be advanced to MBT (minimum advance for best torque) by WI and gross indicated thermal efficiency (gITE) increases to 51.2% (premium gasoline) at water/fuel weight ratio (W/F) = 57.7% and 50.8% (S5H) at W/F = 62.9%. In the case of S5R, on the other hand, a strong knock forces a large spark retard at no-water condition.
Journal Article

Model-Based Design of Controlled Suspension Incorporating Ride Comfort Sensory Performance Model for Vibration during Vehicle Driving

2023-04-11
2023-01-0175
The aim of this study was to build a model-based design tool that allows multidisciplinary teams to design vehicle performance targets using an easily understandable common index during the conceptual design phase of vehicle ride comfort performance. The newer a system is in the conceptual design stage without a prototype, the more difficult it is to describe its performance and impact on the vehicle. The originality of this study lies in the proposal of an understandable design tool for the social implementation of new technology, referred to as the multidisciplinary optimization (MDO) and “1DCAE” design concept. More specifically, the subject is the conceptual design of a unique electronically controlled damper system. A model-based development tool was developed, and numerical analysis was performed based on the following approach.
Technical Paper

Real World Emissions Analysis Using Sensor-based Emissions Measurement System for Light-duty Direct-Injection Gasoline Vehicle

2022-03-29
2022-01-0572
In recent years, particulate matter (PM) emitted from direct-injection gasoline vehicles is becoming an increasingly concerning problem. In addition, it is often reported that ammonia (NH3) is emitted from gasoline vehicles equipped with a three-way catalyst. These emissions might be largely emitted especially when driving in on-road driving conditions. In this study, we investigated the emissions, NOx, NH3, and PM/PN (particulate number) of a light-duty direct-injection gasoline vehicle when driving on actual roads. Using a small direct-injection gasoline vehicle equipped with a three-way catalyst, experiment was conducted 8 times on the same route, and these emissions were measured. In this study, vehicle specific power (VSP) was introduced, which can be calculated using vehicle parameters, vehicle speed, and road gradient. The effects of parameters acquired through on-board diagnostics (OBD) port and VSP on emissions were investigated.
Technical Paper

Stress Distribution of High-Strength Thin-Shell Structure during Buckling Collapse

2021-04-06
2021-01-0294
Collision safety and lightweight vehicle structures are key components in the development process of new vehicles. A method is needed to estimate the structural strength accurately so that designers can consider the response to high-speed collisions in their initial design process. In this study, we carried out bending analyses of thin-shell square cylinders to simulate automotive frame members using the finite element method (FEM) to investigate the effective width. The accuracies of conventional formulas, Karman's formula and the formula of Noma et al. were verified in the case of 270-MPa to 1500-MPa materials. In this study, the estimated effective width using Karman’s formula was larger than the results of FEM analyses under all conditions. In addition, the discrepancy between Noma’s formula and the FEM results is large for higher-strength materials. Thus, the conventional formulas lack the accuracy to estimate recently developed higher-strength materials.
Technical Paper

Study on Fuel-Saving Durability of Ultra-Low Viscosity 0W-8 Gasoline Engine Oil

2021-04-06
2021-01-0566
The JASO GLV-1 standard was introduced in Japan for 0W-8 ultra-low viscosity gasoline engine oil to improve fuel economy. Fuel economy targets are specified for new oil but not for aged oil. In contrast, Sequence VI in the ILSAC GF-6 standard requires fuel economy improvement for both new and aged oils. This test simulates fuel economy improvement after 6400 km (FEI 1) and 16000 km (FEI 2) of driving based on US fuel economy certification testing. Currently, 0W-8 is not included in the ILSAC standard and the fuel-saving durability of 0W-8 has not been investigated. To include ultra-low viscosity oil like 0W-8 in future engine oil standards, it is necessary to know its fuel-saving durability and to examine the evaluation test method. This study focused on the fuel-saving durability of 0W-8 with or without the Mo friction modifier and considered the evaluation method.
Technical Paper

Investigation on Effect of Offset Orifice Nozzle on Diesel Combustion Characteristics

2020-09-15
2020-01-2038
Compression ignition engines provide superior thermal efficiency over other internal combustion engines. Unfortunately the combustion process is diffusive combustion, meaning a lot of fuel is impinged the on the piston and cylinder wall. This creates cooling loss coupled with smoke, CO and THC. Minimization of the nozzle orifice diameter is a simple method widely used to shorten spray penetration. However, decreasing the nozzle orifice diameter also decreases fuel flow rate resulting in a prolonged injection and combustion process and reducing thermal efficiency. An offset orifice nozzle causes less fuel impingement by shorter fuel spray penetration without significant reduction of fuel flow rate. The offset orifice nozzle was made by shifting its alignment from the center of the sac to the edge of the sac following the swirl direction. A counterbore design was applied to maintain constant orifice length.
Technical Paper

Stereoscopic Micro-PIV Measurement of Near-Wall Velocity Distribution in Strong Tumble Flow under Motored SI Engine Condition

2020-09-15
2020-01-2019
In a state-of-the-art lean-burn spark ignition engine, a strong in-cylinder flow field with enhanced turbulence intensity is formed, and understanding the wall heat transfer mechanism of such a complex flow is required. The flow velocity and temperature profiles inside the wall boundary layer are strongly related to the heat transfer mechanism. In this study, two-dimensional three-component (2D3C) velocity distribution near the piston top surface was measured during the compression stroke in a strong tumble flow using a rapid compression and expansion machine (RCEM) and a stereoscopic micro-PIV system. The bore, stroke, compression ratio, and compression time were 75 mm, 128 mm, 15, and 30 ms (equivalent to 1000 rpm), respectively.
Journal Article

A Role of NO2 on Soot Oxidation in DPFs and Effect of Soot Cake Thickness in Catalyzed DPFs Using Temperature-Programmed Oxidation and Electron Microscopic Visualization

2020-09-15
2020-01-2201
Development of the diesel particulate filter (DPF) aims to attain fast oxidation of accumulated soot at low temperature. Numerous researchers have explored the characteristics of soot oxidation under ambient conditions of simulated exhaust gas using thermogravimetric analysis or a flow reactor. In this study, temperature programmed oxidation (TPO) experiments were carried out for soot entrapped in miniaturized DPFs, cut-out from practical particulate filters, yielding wall-flow features typically encountered in real-world DPFs. Furthermore, when using the miniaturized samples, highly accurate lab-scale measurements and investigations can be facilitated. Examining different temperature ramping rates used for the TPO experiments, we propose a rate of 10°C/min as the most effective in analyzing soot oxidation in the practical filter substrates.
Technical Paper

Real-World Emission Analysis Methods Using Sensor-Based Emission Measurement System

2020-04-14
2020-01-0381
Every year, exhaust gas regulations are getting stricter with the intention to solve the average air pollution problem, however, local roadside pollution is still a pressing issue. In order to solve this local roadside pollution problem, it is necessary to evaluate and/or predict “where” and “how much” pollutants such as NOx are emitted. To predict the local roadside pollution, it is necessary to collect emissions data from various kinds of vehicles driving on real-world and analyze them. In recent years, Real Driving Emission regulations using PEMS (Portable Emission Measurement System) have been introduced mainly in Europe. A typical PEMS configuration can weigh close to 100 kg however, and its weight affects the driving conditions of vehicles running on actual roads. In this study, we focused on the analysis of real-world emissions using SEMS (Sensor-based Emission Measurement System).
Journal Article

Combustion Characteristic of Offset Orifice Nozzle under Multi Pulse Ultrahigh Pressure Injection and PCCI Combustion Conditions

2020-01-24
2019-32-0522
CI engines provide higher thermal efficiency compared to other internal combustion engines. On the other hand large amounts of smoke and NOx are produced during combustion. Smoke and NOx can be reduced by applying Premixed Charge Compression Ignition (PCCI) combustion. Unfortunately, the problems of PCCI combustion include unstable start of combustion and limited operating range. The multi-pulse ultrahigh pressure injection allows fuel to control PCCI combustion. The objective of offset orifice nozzle is to improve mixture formation and shorten spray penetration in order to increase thermal efficiency and control PCCI combustion. The offset orifice nozzle was designed by shift orifice aliment from into the sac center to edge of sac follow swirl direction. Counter bore design was applied to offset orifice nozzle in order to keep the constant orifice length as standard nozzle.
Technical Paper

Visualization and Analysis of Droplets Behavior in Aftertreatment Systems: I. Experimental Study by Acrylic SCR Dosing Simulator

2020-01-24
2019-32-0613
Diesel engines have been extensively used as a primary power source for truck and off-road applications. Exhaust gas emissions from the engines, in particular Nitrogen oxides (NOx) is reduced using Selective catalytic reduction (SCR) dosing systems in aftertreatment systems. The injection of urea aqueous solution spray in the exhaust pipe of the small off-road diesel engines significantly eliminate NOx emissions. However, the crystallization of urea from the evaporative aqueous solution droplets and wall deposit formation in exhaust pipes are main issues in SCR dosing systems. The issues are critical deterioration of performance in aftertreatment systems. Nevertheless, the visualization study hasn't been investigated for the inside of exhaust pipes yet. This paper describes visualization experiments of the injected droplets behavior by Acrylic SCR dosing simulator. First visualization technique was applied measuring the gas flow distribution and directions with a smoke generator.
Technical Paper

Impact of Engine Oil Additives on Nanostructure and Oxidation Kinetics of Diesel and Synthetic Biodiesel Particulate Matters using Electron Microscopy

2019-12-19
2019-01-2351
Physicochemical characteristics of particulate matters which are influenced by engine oil additives from engine combustion of diesel and synthetic biodiesel: hydrotreated vegetable oil (HVO) were successfully investigated using electron microscopy, electron dispersive x-ray spectroscopy and thermogravimetric analysis. The agglomerate structure of diesel PM, HVO PM and diesel blending lubricant PM are similar in micro-scales. However, nanostructure of soot is a spherical shape composed of curve line crystallites while the metal oxide ash nanostructure is composed of parallel straight line hatch patterns. The oxidation kinetics of fuel blending lubricant PMs are higher than neat fuel PMs due to catalytic effect of incombustible metal additives from engine lubricating oil.
Technical Paper

Investigation on Premixed Charge Compression Ignition Combustion Control Using Multi Pulse Ultrahigh Pressure Injection

2019-04-02
2019-01-1155
Compression ignition (CI) engines provide higher thermal efficiency compared to other internal combustion engines although large amounts of NOx and soot are produced during combustion. NOx and soot emissions can be reduced by using Premixed Charge Compression Ignition (PCCI) combustion. However, the problems of PCCI combustion include limited operating range, unstable start of combustion and an increase in combustion noise. The multi-pulse ultrahigh pressure injection allows fuel to be injected near TDC, improving mixture formation and enhancing the possibility to extend the operating range of PCCI combustion. The objective of this paper is to control and extend the operating range of PCCI combustion using multi-pulse ultrahigh pressure injection. This has not been studied before. Combustion characteristics were investigated using apparent rate of heat release analysis, heat balance analysis, exhaust emission measurement and soot concentration measurement.
Technical Paper

Impact of TiO2 and V2O5 on Sintered Mullite Porous Microstructure and Soot Oxidation Kinetics Using SEM and TGA

2019-03-25
2019-01-1407
The exhaust emissions from diesel combustion are the sources of particulate matter emitted to the atmosphere, which are components of air pollution that implicated in human health such as lung cancer. At present the diesel particulate filter can remove PM from the exhaust gas before emitted to the atmosphere. This research is investigating morphology and structure of acicular mullite to develop the fabrication process filter in order to study particulate matters trapping and oxidation mechanisms. This paper used two main substances to study the structure of diesel particulate filter (DPFs); Aluminum oxide (Al2O3) and Silicon dioxide (SiO2). These are mainly in the conventional DPFs. The variable substances are Titanium dioxide (TiO2) and Vanadium oxide (V2O5), which added to investigate and produce the acicular mullite DPFs structure. The mullite samples were sintered at 1300 oC with holding time of 1 h.
X