Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluation of a Design Support Tool Incorporating Sensory Performance Model of Ride Comfort for Conceptual Design of Controlled Suspensions

2024-04-09
2024-01-2292
The objective of this study is to introduce and assess a computational tool designed to facilitate product development via sensory scores, which serve as a quantifiable representation of human sensory experiences. In the context of designing ride comfort performance, the specialized terminology—either technical or sensory—often served as a barrier to comprehension among the diverse set of specialists constituting the multidisciplinary team. In a previous study by the authors introduced a tool that incorporated a model of sensory performance, utilizing sensory scores as universally comprehensible metrics. However, the tool had yet to be appraised by a genuine cross-functional team. In this study, the tool underwent evaluation through a user-testing process involving twenty-five cross-functional team members engaged in the conceptual design phase at an automotive manufacturing company.
Technical Paper

A study of Multi-Functional Membrane Filters made of Fine Catalyst Particles

2023-09-29
2023-32-0125
A multi-functional membrane filter was developed through deposition of agglomerated Three-Way Catalyst particles with a size of 1 ~ 2 microns on the conventional bare particulate filter. The filtration efficiency reaches almost 100 % from the beginning of soot trapping with a low pressure drop and both reductions of NO and CO emission were achieved.
Journal Article

Model-Based Design of Controlled Suspension Incorporating Ride Comfort Sensory Performance Model for Vibration during Vehicle Driving

2023-04-11
2023-01-0175
The aim of this study was to build a model-based design tool that allows multidisciplinary teams to design vehicle performance targets using an easily understandable common index during the conceptual design phase of vehicle ride comfort performance. The newer a system is in the conceptual design stage without a prototype, the more difficult it is to describe its performance and impact on the vehicle. The originality of this study lies in the proposal of an understandable design tool for the social implementation of new technology, referred to as the multidisciplinary optimization (MDO) and “1DCAE” design concept. More specifically, the subject is the conceptual design of a unique electronically controlled damper system. A model-based development tool was developed, and numerical analysis was performed based on the following approach.
Technical Paper

Real-World Emission Analysis Methods Using Sensor-Based Emission Measurement System

2020-04-14
2020-01-0381
Every year, exhaust gas regulations are getting stricter with the intention to solve the average air pollution problem, however, local roadside pollution is still a pressing issue. In order to solve this local roadside pollution problem, it is necessary to evaluate and/or predict “where” and “how much” pollutants such as NOx are emitted. To predict the local roadside pollution, it is necessary to collect emissions data from various kinds of vehicles driving on real-world and analyze them. In recent years, Real Driving Emission regulations using PEMS (Portable Emission Measurement System) have been introduced mainly in Europe. A typical PEMS configuration can weigh close to 100 kg however, and its weight affects the driving conditions of vehicles running on actual roads. In this study, we focused on the analysis of real-world emissions using SEMS (Sensor-based Emission Measurement System).
Technical Paper

Investigation on Premixed Charge Compression Ignition Combustion Control Using Multi Pulse Ultrahigh Pressure Injection

2019-04-02
2019-01-1155
Compression ignition (CI) engines provide higher thermal efficiency compared to other internal combustion engines although large amounts of NOx and soot are produced during combustion. NOx and soot emissions can be reduced by using Premixed Charge Compression Ignition (PCCI) combustion. However, the problems of PCCI combustion include limited operating range, unstable start of combustion and an increase in combustion noise. The multi-pulse ultrahigh pressure injection allows fuel to be injected near TDC, improving mixture formation and enhancing the possibility to extend the operating range of PCCI combustion. The objective of this paper is to control and extend the operating range of PCCI combustion using multi-pulse ultrahigh pressure injection. This has not been studied before. Combustion characteristics were investigated using apparent rate of heat release analysis, heat balance analysis, exhaust emission measurement and soot concentration measurement.
Technical Paper

Heat Transfer Analysis in a Diesel Engine Based on a Heat Flux Measurement Using a Rapid Compression and Expansion Machine

2017-11-05
2017-32-0115
To investigate the heat transfer phenomena inside the combustion chamber of a diesel engine, a correlation for the heat transfer coefficient in a combustion chamber of a diesel engine was investigated based on heat flux measured by the authors in the previous study(8) using the rapid compression and expansion machine. In the correlation defined in the present study, thermodynamically estimated two-zone temperatures in the burned zone and the unburned zone are applied. The characteristic velocity given in the correlation is related to the speed of spray flame impinging on the wall during the fuel injection period. After the fuel injection period, the velocity term of the Woschni’s equation is applied. It was shown that the proposed correlation well expresses heat transfer phenomena in diesel engines.
Technical Paper

Impact of Biodiesel on Small CI Engine Combustion Behavior and Particle Emission Characteristic

2017-11-05
2017-32-0094
Diesel engines are high thermal efficiency because of high compression ratio but produce high concentration of particulate matter (PM) because of direct injection fuel diffusion combustion. PM must be removed from the exhaust gas to protect human health. This research describes biodiesel engine performance, efficiency and combustion behavior using combustion pressure analyzer. It was clearly observed that PM emitted from CI engines can be reduced by using renewable bio-oxygenated fuels. The morphology and nanostructure of fossil fuel and biofuel PMs were investigated by using a Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The morphology of biodiesel and diesel doesn’t have much different in the viewpoint of particulate matter trapping using DPF micro surface pores. The agglomerated ultrafine particles and primary nanoparticles sizes of diesel and biodiesel engine’s PM are approximately 50-500 nm and 20-50 nm, respectively.
Technical Paper

The Effect of Exhaust Gas Recirculation on Performance and Emission of Ethanol Fumigated Diesel Engine

2017-11-05
2017-32-0101
Primary energy source such as fossil fuel keep decreasing due to various kind of usage. According to less amount of the fossil fuel, human seeks for an alternative fuel source such as alcohol. Alcohol like ethanol can be produced easily from strarchy plant. But using alcohol as blended fuel with diesel fuel doesn't work well because alcohol has low cetane number, lack of lubricity and very low miscibility with diesel fuel. To overcome this, fumigation system or port fuel injection of alcohol seems interesting. Although it requires more complicate system but it can compensate the miscibility issue and alcohol can be used in higher dose to give more energy. Diesel engine produces a lot of emission such as NOx and some other carbon content emission like HC, CO and soot due to they run in lean condition as their characteristic. Modern diesel engines are now coupled with exhaust gas recirculation system to help reduce in main emission like NOx.
Technical Paper

A DNS Study on Global and Local Flame Structures In Thin Reaction Zones

2015-09-01
2015-01-1909
Three-dimensional direct numerical simulations of methane-air turbulent premixed flame propagating in homogenous isotropic turbulence are conducted to investigate local and global flame structure in thin reaction zones. GRI-Mech 3.0 is used to represent methane-air reactions. The equivalence ratio of unburned mixture is 0.6 and 1.0. For a better understanding of the local flame structure in thin reaction zones, distributions of mass fractions of major species, heat release rate and temperature are investigated. To clarify effects of turbulence on the local and global flame structures, the statistical characteristics of flame elements are also revealed.
Technical Paper

A 3D DNS Investigation on the Flame-Wall Interactions and Heat Loss in a Constant Volume Vessel

2015-09-01
2015-01-1910
A direct numerical simulation of turbulent premixed flames in a constant volume vessel is conducted to understand flame-wall interactions and heat loss characteristics under the pressure rising condition. The contribution of the burnt region to the total heat flux is more significant compared to the reaction region. The velocity profiles indicate inward and outward motions. The profile of the turbulent kinetic energy is damped by the wall, and no distinct turbulence production is observed. Since the turbulence is weakened in the burnt region, the effect of near wall turbulence to the total wall heat flux is considered to be limited.
Technical Paper

Scanning Electron Microscopic Visualization of Transition from Surface Pore Filtration to Cake Filtration Inside Diesel Particulate Filter Walls

2015-04-14
2015-01-1018
Surface pores that are open to the inlet channel below the surface play a particularly important role in the filtration of particulate matter (i.e., soot) inside the walls of a diesel particulate filter (DPF); they are closely related to the pressure drop and filtration efficiency through the DPF as well as the performance of the regeneration process. In this study, a scanning electron microscope (SEM) was used to dynamically visualize the soot deposition process at the particle scale as “time-lapse” images corresponding to the different increases in the pressure drop at each time step. The soot was first trapped at the deepest areas of the surface pores because the porous channels in this area were constricted by silicon carbide grains; soot dendrite structures were observed to grow and finally cause obstructions here.
Journal Article

Physical Characteristics of Twin-Tube Shock Absorber

2014-03-24
2014-01-2001
In an automotive suspension, a shock absorber plays a significant role to enhance the vehicle performances, particularly ride comfort and road holding. Because of its important influences on the overall vehicle performances, the understanding of its physical characteristics is essential. Thus, this paper develops a mathematical model of twin-tube shock absorber that is widely used in modern production cars. The model is derived based on a rational polynomial formulation. This formulation generally represents the flow behaviors of fluid across a restriction. Further, simulation results are compared to those obtained from experiments to determine the model accuracy. The result comparison illustrates that the model is able to describe the behavior of shock absorber with slight discrepancies.
Technical Paper

A Design Guide for Wet Multiple Plate Clutches on Forklift Truck Transmissions Considering Strength Balance between Friction Material and Mating Plate

2013-04-08
2013-01-0231
Wet multiple plate clutches consist of friction plates, on which a friction material is bonded, and mating plates that are plain metal plates. Since the frequency and the range of load in the field of forklift trucks vary widely and are more severe than those for passenger cars, the wet multiple plate clutches on forklift trucks are often damaged. Damaged clutches that were returned from the field typically had 3 types of symptoms: 1.Only the friction material was damaged, 2.Only the mating plates were deformed, 3.Both symptoms were observed. It was clear that the cause of these symptoms depended on the difference of the operating application and the strength criteria of each part. This showed that a design guide for wet multiple plate clutches considering the strength balance between the two parts according to the work application was required. The relevant flow chart of this design process was proposed.
Technical Paper

Low Temperature Starting Techniques for Ethanol Engine without Secondary Fuel Tank

2011-11-08
2011-32-0552
The present study aims to investigate the parameters affecting cold start characteristics of ethanol at low temperature, and suggest a solution to avoid cold starting problem without the installation of second fuel tank. The testing engine is a 125cc volume displacement, single-cylinder four strokes SI engine with fuel injection and ignition timing system controlled by ECU (electronic control unit). The cold starting performance tests were extensively conducted with different percentages of ethanol blends, surrounding temperatures, heating inside combustion chamber, heater injector, pre-cranking without fuel injection, and amount of fuel injection. From the experimental results, when using ethanol fuel in conventional engine, the problem of cold starting was observed at surrounding temperature lower than 20°C for ethanol. Increasing of injection duration can lower the possible cold start temperature of neat ethanol.
Technical Paper

Application of Energy Optimal Control to Energy Management of Hybrid Vehicle

2011-05-17
2011-39-7244
Energy optimal control theory (EOC) is applied to the energy flow control of a hybrid electric vehicle. Since the differential equation is solved analytically, the control law can be easily implemented in real time. Because the objective function is described in power form that permits negative value, not only the energy consumption is minimized but also the energy regeneration by the motor is maximized. In the simulation for the 10-mode driving, it is shown that the fuel cost of EOC is 15% lower than the rule based control (RBC).
Journal Article

Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method

2009-11-02
2009-01-2742
A simultaneous multi-composition analyzing (SMCA) resonance enhanced multi-photon ionization (REMPI) system was used to investigate gasoline engine exhaust. Observed peaks for exhaust were smaller mass numbers than those from diesel exhaust. However, large species up to three ring aromatics were observed suggesting that soot precursor forms even in the gasoline engine. At low catalyst temperature condition, the reduction efficiencies of a three-way catalyst were higher for higher mass numbers. This result indicates that the larger species accumulate in the catalyst or elsewhere due to their lower vapor pressures. To evaluate the emission of low volatility species, the accumulation should be taken into account. In the hot mode, reduction efficiencies for aromatic species of three-way catalyst were almost 99.5% however, they fall to 70% in the cold start condition.
Technical Paper

Pyrene-LIF Thermometry of the Early Soot Formation Region in a Diesel Spray Flame

2005-09-11
2005-24-006
In order to investigate early soot formation process in diesel combustion, spectral analysis and optical thermometry of early soot formation region in a transient spray flame under diesel-like conditions (Pg2.8 MPa, Tg620-820K) was attempted via laser-induced fluorescence (LIF) from pyrene (C16H10) doped in the fuel. Pyrene is known to exhibit a temperature\-dependent variation of LIF spectrum; the ratio of S2/S1 fluorescence yields, from the lowest excited singlet state S1 and the second excited singlet state S2, depends on temperature. In the present study, pyrene was doped (1%wt) in a model diesel fuel (0-solvent) and the variation of LIF spectra from the pyrene in the spray flame in a rapid compression machine were examined at different ambient temperatures, ambient oxygen concentrations, measurement positions and timings after start of fuel injection.
Technical Paper

Influence of the Head Shape Variation on Brain Damage under Impact

2005-06-14
2005-01-2738
The influence of the head shape on intracranial responses under impact was investigated by using Finite Element Method. Head shape models of 52 young adult male Japanese were analyzed by Multi Dimensional Scaling (MDS), and a 2 dimensional distribution map of head shapes was obtained. Five finite element models of the Japanese head were constructed by a transformed finite element model of an average European adult male (H-Head model) using Free Form Deformation (FFD) technique. The constructed models represent the 5th and 95th percentile of the first 2 scales obtained by MDS. The same acceleration pulse was applied to the H-Head model and the five finite element models. The cause of the difference was considered to be differences in pressure distribution in the brain caused by the differences in the head shape. Variation in the head shape should be taken into account in simulating the effects of impact using a finite element model.
Technical Paper

A Numerical Simulation of Turbulent Mixing in Transient Spray by LES (Comparison between Numerical and Experimental Results of Transient Particle Laden Jets)

2004-06-08
2004-01-2014
The purpose of this study is to investigate the turbulent mixing in a diesel spray by large eddy simulation (LES). As the first step for the numerical simulation of diesel spray by LES, the LES of transient circular gas jets and particle laden jets were conducted. The simulation of transient circular jets in cylindrical coordinates has numerical instability near the central axis. To reduce the instability of calculation, azimuthal velocity around the central axis is calculated by the linear interpolation and filter width around the axis is modified to the radial or axial grid scale level. A transient circular gas jet was calculated by the modified code and the computational results were compared with experimental results with a Reynolds number of about 13000. The computational results of mean velocity and turbulent intensity agreed with experimental results for z/D>10. Predicted tip penetration of the jet also agreed to experimental data.
Technical Paper

Measurement of Excitation-Emission Matrix of Shock-heated PAHs using a Multi-wavelength Laser Source

2003-05-19
2003-01-1785
Measurements of Excitation-Emission Matrix (EEM) of shock-heated vapors of polycyclic aromatic hydrocarbons (PAHs) at high temperature (750-1500K) and high pressure (0.3-1.3MPa) conditions were conducted using a multi-wavelength excitation laser in order to demonstrate the potential of the single-measurement EEM fluorometry for investigation of soot precursors. Argon-diluted vapors of naphthalene and pyrene, as PAH model compounds, were heated in an optically accessible shock tube. The PAH vapors were excited by a coherent multi-wavelength “rainbow” laser light generated by converting the 4th harmonic (266nm) of a pulsed Nd:YAG laser using a Raman cell frequency converter filled with high-pressure (2MPa) methane-hydrogen mixture.
X