Refine Your Search

Topic

Search Results

Technical Paper

A New Design for Dedicated Hybrid Transmission (DHT) Product Platform Development Solution

2022-03-29
2022-01-0670
With increasing pressure for reduction in CO2 emissions and stricter fuel targets from road vehicles, OEMs around the globe have to electrify their vehicle range to meet increasingly challenging emission standards in recent years and new transmission technologies are gaining more attention in different main markets. The actual and future powertrain development has three major directions in order to reduce or avoid emissions in the transportation sector: Hybrid Vehicles: Hybrid Electric Vehicles (HEV), Plug-in HEV (PHEV) Electric Vehicles (EV); Range Extender Electric Vehicle (REEV); Fuel Cell Electric Vehicles (FCEV), Range Extender FCEV (REFCEV). This paper presents a new type Hybrid transmission which is called “DHT (Dedicated Hybrid Transmission)” technology for cost-effective HEVs and PHEVs; it permits the design of very compact automatic transmissions with an integrated high-voltage electric motor on the output side of the transmission.
Technical Paper

Coordinated Control under Transitional Conditions in Hybrid Braking of Electric Vehicle

2018-10-05
2018-01-1869
In the hybrid brake system of electric vehicle, due to the limitation of the motor braking force when the motor is at high speed and the failure of the regenerative braking force when the motor is at low speed, there are three transitional conditions in hybrid braking: the hydraulic brake system intervenes the braking, the hydraulic brake system withdraws the braking and the regenerative braking force withdraws the braking. Due to the response speed of the hydraulic system is slower than that of the motor, there is a large braking impact (the derivative of braking deceleration) in the transitional conditions of hybrid braking, which deteriorates the smoothness and comfort in braking. Aiming at the impact caused by the poor cooperation between the hydraulic braking force and the motor braking force, a coordinated strategy of double closed-loop feedback and motor force correction is proposed in this paper.
Technical Paper

Open-Loop Characteristics Analysis and Control of High Speed On-Off Valve

2018-10-05
2018-01-1868
In the process of ABS control, the Anti-lock braking system (ABS) of the vehicle adjusts the wheel cylinder brake pressure through the hydraulic actuator so as to control the movement of the wheel. The high-speed on-off valve (HSV) is the key components of the Anti-lock braking system. HSV affects the performance of the hydraulic actuator and the valve response characteristics affects the Anti-lock braking system pressure response as well as braking effect. In this paper, the electromagnetic field theory and flow field theory of HSV are analyzed, and simulation analysis of electromagnetic field characteristics of HSV is done by ANSYS. Combined with the ANSYS analysis results, a precise physical model of HSV is constructed in AMESim. Meanwhile, the valve response characteristics are analyzed. Moreover, the influence of different wheel cylinder diameter and PWM carrier frequency on hydraulic braking force characteristics are analyzed.
Technical Paper

Correlation of Objective and Subjective Evaluation in Automotive Brake Pedal Feel

2018-10-05
2018-01-1889
In order to establish the correlation between objective and subjective evaluation of brake pedal feel for passenger cars, road tests of brake pedal feel were carried out and an evaluation method was proposed. In the road tests, subjective scores and objective measurements were obtained under the conditions of uniform and emergency braking. The objective measurements include pedal preload, low deceleration pedal force and travel, moderate deceleration pedal force and travel, brake response time and brake linearity. Using the theory of analytic hierarchy process (AHP), the design process of the evaluation method was established. Key setups including the hierarchical structure model, the judgement matrix and the score calculation method of objective measurements were described in detail. Then, the correlation between subjective and objective scores was analyzed. It can be concluded that the evaluation method is effective and it can be applied to brake pedal feel assessment and adjustment.
Technical Paper

Study on Brake Disc Dynamics under Asymmetric Thermal Loads

2018-10-05
2018-01-1901
In order to explore the generation mechanism of hot-spots on the automotive brake disc, disc tests under non-frictional thermal loads are carried out on the brake dynamometer test bench. In the tests, the oxy-acetylene flame is used as the heat source, and the distribution characteristics of the disc temperature and displacement are measured and analyzed. To confirm the mechanism of the disc deformation, a disc thermal buckling model using finite element method is established, and the key factors for the disc thermal buckling under thermal loads are further analyzed. It is found that the temperature circumferential gradient is small but the temperature radial gradient is large. The disc presents waviness deformation mode with 5th order in circumferential direction, which is the first thermal buckling mode of the disc. A method using spatial frequency spectrum has been proposed to find the critical time and load of thermal buckling.
Technical Paper

Study on Lane Change Trajectory Planning Considering of Driver Characteristics

2018-08-07
2018-01-1627
Automatic lane change of intelligent vehicles is a complex process. Besides of safety, feelings of the driver and passengers during the lane change are also very important. In this paper, a lane change trajectory planner is designed to generate an ideal collision-free trajectory to satisfy the driver’s preference. Various lane changing modes, gentle lane change, general lane change, radical lane change and personalized lane change, are designed to meet the needs of different passengers on vehicles simultaneously. In this paper, the condition of the two-lane change is studied. One vehicle is in front of the ego vehicle at the same lane and one is at the rear of the ego vehicle at the target lane. A trajectory planning method is then established based on constant speed offset and sine curve, vehicle distances and speed difference, etc. The key factors which can reflect drivers’ lane change characteristics are then acquired.
Technical Paper

Effects of Lubricant Additives on Auto-Ignition under a Hot Co-Flow Atmosphere

2017-10-08
2017-01-2231
Pre-ignition may lead to an extreme knock (super-knock or mega-knock) which will impose a severe negative influence on the engine performance and service life, thus limiting the development of downsizing gasoline direct injection (GDI) engine. More and more studies reveal that the auto-ignition of lubricants is the potential source for pre-ignition. However, pre-ignition is complicated to study on the engine test bench. In this paper, a convenient test method is applied to investigate the influence of lubricants metal-additives on pre-ignition. 8 groups of lubricants are injected into a hot co-flow atmosphere which generated by a burner. A single-hole nozzle injector with a diameter of 0.2 mm at 20 MPa injection pressure is utilized for lubricants' injection and spray atomization. The ignition delays of lubricants with different additives of calcium, ZDDP (Zinc Dialkyl Dithiophosphates) and magnesium content under the hot co-flow atmosphere are recorded with a high-speed camera.
Technical Paper

Precise Steering Angle Control of Lane Change Assist System

2017-09-23
2017-01-2002
After obtaining the optimal trajectory through the lane change decision and trajectory planning, the last key technology for the automatic lane change assist system is to carry out the precise and rapid steering actuation according to the front wheel angle demand. Therefore, an automatic lane change system model including a BLDCM (brushless DC motor) model, a steering system model and a vehicle dynamics model is first established in this paper. Electromagnetic characteristics of the motor, the moment of the inertia and viscous friction etc. are considered in these models. Then, a SMC (Sliding Mode Control) algorithm for the steering system is designed to follow the steering angle input. The control torque of the steering motor is obtained through the system model according to steering angle demand. After that, the control current is calculated considering of electromagnetic characteristics of the BLDCM. Debugging and optimization of the control algorithm are done through simulations.
Technical Paper

The Trajectory Planning of the Lane Change Assist Based on the Model Predictive Control with Multi-Objective

2017-09-23
2017-01-2004
The automatic lane change assist system is an intelligent driving assistance technology oriented to traffic safety, which requires trajectory planning of the lane change maneuver based on the lane change decision. A typical scene of lane change for overtaking is selected, where the front vehicle in the same lane and the rear vehicle in the left lane are deemed to be potential dangerous vehicles through the lane change. Lane change trajectory equation is first established according to the general law of steering wheel angle through lane changes. Based on the relative position, velocity and acceleration information of the dangerous vehicles and the lane change vehicle, motions of these surrounding dangerous vehicles are predicted. At the same time, a multi-objective optimization function is established based on the relative longitudinal safety boundary. The objectives are the minimum safety distance, the lane change time and the front wheel angle.
Technical Paper

Comparison of Fuel Economy Improvement by High and Low Pressure EGR System on a Downsized Boosted Gasoline Engine

2017-03-28
2017-01-0682
In this paper comparisons were made between the fuel economy improvement between a High Pressure loop (HP) water-cooled Exhaust Gas Recirculation (EGR) system and a Low Pressure loop (LP) water-cooled EGR system. Experiments were implemented on a 1.3-Litre turbocharged PFI gasoline engine in two pars. One was EGR rate as single operating point to compare the different effect of HP- and LP-EGR. The other was mini map from 1500rpm to 3000rpm and BMEP from 2bar to 14bar because of the relative narrow available range of HP-EGR system. In consideration of practical application of EGR system, the coolant used in this experiment was kept almost the same temperature as in real vehicles (88±3°C) instead of underground water temperature, besides a model was built to calculate constant volume ratio (CVR). The results indicated that the effect of HP-EGR was weaker than that of LP-EGR under the same EGR rate, which could be seen from change of combustion parameters.
Journal Article

Characteristics of Lubricants on Auto-ignition under Controllable Active Thermo-Atmosphere

2016-04-05
2016-01-0889
Downsizing gasoline direct injection engine with turbo boost technology is the main trend for gasoline engine. However, with engine downsizing and ever increasing of power output, a new abnormal phenomenon, known as pre-ignition or super knock, occurs in turbocharged engines. Pre-ignition will cause very high in-cylinder pressure and high oscillations. In some circumstances, one cycle of severe pre-ignition may damage the piston or spark plug, which has a severe influence on engine performance and service life. So pre-ignition has raised lots of attention in both industry and academic society. More and more studies reveal that the auto-ignition of lubricants is the potential source for pre-ignition. The auto-ignition characteristics of different lubricants are studied. This paper focuses on the ignition delay of different lubricants in Controllable Active Thermo-Atmosphere (CATA) combustion system.
Technical Paper

Study on Fuel Economy Improvement by Low Pressure Water-Cooled EGR System on a Downsized Boosted Gasoline Engine

2016-04-05
2016-01-0678
This research was concerned with the use of Exhaust Gas Recirculation (EGR) improving the fuel economy over a wide operating range in a downsized boosted gasoline engine. The experiments were performed in a 1.3-Litre turbocharged PFI gasoline engine, equipped with a Low Pressure (LP) water-cooled EGR system. The operating conditions varied from 1500rpm to 4000rpm and BMEP from 2bar to 17bar. Meanwhile, the engine’s typical operating points in NEDC cycle were tested separately. The compression ratio was also changed from 9.5 to 10.5 to pursue a higher thermal efficiency. A pre-compressor throttle was used in the experiment working together with the EGR loop to keep enough EGR rate over a large area of the engine speed and load map. The results indicated that, combined with a higher compression ratio, the LP-EGR could help to reduce the BSFC by 9∼12% at high-load region and 3∼5% at low-load region.
Technical Paper

Research of Active Power Source Based on Electronic Hydraulic Braking System

2015-04-14
2015-01-1211
To research the dynamic response of active power source of electronic hydraulic brake system, the paper proposes a restricted distribution control strategy. Building control strategy model and active power source model to simulation with Matlab/Simulink and AMEsim, and bench test is conducted on different driving cycles, which proves that the dynamic response of active power source is fit and controllable by adjusting PID parameters.
Technical Paper

Control Optimization of a Compound Power-Split Hybrid Transmission for Electric Drive

2015-04-14
2015-01-1214
A novel compound power-split hybrid transmission based on a modified Ravigneaux gear set is presented. The equivalent lever diagrams are used to investigate the electric operating modes for the hybrid powertrain, and then its dynamic and kinematic characteristics as well as efficiency characteristics are described in equations. A brake clutch mounted on the carrier shaft is proposed to enhance the electric driving efficiency for the hybrid transmission. Three types of electric operating mode are analyzed by the simplified combined lever diagrams and the system efficiency and torque characteristics for these electric operating modes are compared. A major influence on output torque of the hybrid transmission derived from the torque capability of motors and brake clutch is depicted.
Technical Paper

Parameter Identification of Tire Model Based on Improved Particle Swarm Optimization Algorithm

2015-04-14
2015-01-1586
Accurate parameters of vehicle motion state are very important to the active safety of a vehicle. Currently the extended Kalman filter and unscented Kalman filter are widely used in estimation of the key state parameters, such as speed. In this situation, tire model must be used. The Magic Formula Tire Model is widely used in vehicle dynamics simulation because of its high versatility and accuracy. However, it requires a large number of parameters, which make the key state parameters of a real vehicle difficult to accurately obtain. Therefore, it is limited in real-time control of a vehicle. Firstly, the original Magic Formula Tire Model is simplified in this paper; then Jin Chi's Tire Model is introduced; thirdly, parameters of both the simplified Magic Formula and Jin Chi's Tire Model are identified using PSO (Particle Swarm Optimization) algorithm. Finally, Jin Chi's Tire Model is also used in parameters identification of experimental data.
Technical Paper

Antilock Brake Control System for Four-Wheel-Drive Electric Vehicle with Electro-hydraulic Braking based on Precise Control of Hydraulic Braking Force

2015-04-14
2015-01-1573
With the objective to regulate hydraulic pressure accurately by controlling high speed on-off valve (HSV), finite element models are parameterized based on measured parameters of an ABS hydraulic actuator unit (HCU). The data that reflects transient electromagnetic characteristics of HSV is selected with finite element numerical simulation. Taking full advantage of those data, accurate physical models of HSV are built with other parts of hydraulic braking system. Then a new system structure is proposed to control hydraulic pressure. Not only do simulation results show ideal control effect, but also hydraulic braking system can be controlled under arbitrary input signal. Accordingly, hydraulic braking force can achieve fine regulation. Finally, the hydraulic braking system is utilized to design antilock brake control system for four-wheel-drive electric vehicle with electro-hydraulic braking. That kind of system is established on the basis of hierarchical control structure.
Technical Paper

Cycle Resolved Combustion and Pre-Ignition Diagnostic Employing Ion Current in a PFI Boosted SI Engine

2015-04-14
2015-01-0881
An ion current sensor is employed in a 4 cylinder production SI engine for combustion diagnosis during combustion process, knock, and low speed pre-ignition (LSPI) detection. The results show that the ion current peak value and ion current peak phase have strong correlation with the cylinder pressure and pressure peak phase respectively. The COV of ion current integral value is greater than the COV of IMEP at the same operating condition. Results show that the ion current signal is sensitive to different lambdas. Using ion current signal, the knock in any given cylinder can be detected. Importantly, the ion sensor successfully detected the low speed pre-ignition (LSPI) about more than 20 °CA before spark ignition.
Technical Paper

A Study on Combustion and Emission Characteristics of GDI Engine for HEV at Quick Start

2014-10-13
2014-01-2709
Gasoline Direct Injection (GDI) engines have attracted interest as automotive power-plants because of their potential advantages in down-sizing, fuel efficiency and in emissions reduction. However, GDI engines suffer from elevated unburned hydrocarbon (HC) emissions during start up process, which are sometimes worsened by misfires and partial burns. Moreover, as the engine is cranked to idle speed quickly in HEVs (Hybrid Electric Vehicle), the transients of quick starts are more dramatically than that in traditional vehicle, which challenge the optimization of combustion and emissions. In this study, test bench had been set up to investigate the GDI engine performances for ISG (Integrated Starter and Generator) HEVs during start up process. Based on the test system, cycle-controlled of the fuel injection mass, fuel injection timing and ignition timing can be obtained, as well as the cycle-resolved measurement of the HC concentrations and NO emissions.
Technical Paper

Effect of Two-Stage Valve Lift for Fuel Economy and Performance on a PFI Gasoline Engine

2014-10-13
2014-01-2874
Reducing the pumping loss, and thus, the fuel consumption of gasoline engine at part load, a two-stage intake valve lift system was implanted into a PFI engine. A corresponding engine model was set up with GT-power as well, which can simulate the effect of two-stage intake valve lift and different EGR rates on fuel economy performance and on combustion condition of a gasoline engine. Based on simulation results, the valve lift control strategy and EGR control strategy was studied in this paper. Results showed that at low engine speed, when SMALL LIFT was used, the tumble flow and the combustion process in cylinder was improved and burn time duration became shorter, resulting in higher indicated efficiency and lower fuel consumption than by LARGE LIFT. With the introduction of the exhaust gas recirculation (EGR), lower fuel consumption was acquired.
Technical Paper

Study on Fuel Injection Parameters Optimization for Common Rail Diesel Engine Fueled with B20 Biodiesel

2014-10-13
2014-01-2655
As a type of alternative fuel, biodiesel has advantages in reducing greenhouse gases and ensuring energy security. Compared with petroleum diesel, biodiesel has different lower calorific value, oxygen content and octane number that would raise problems when the unoptimized common rail diesel engine is fueled with biodiesel or its petroleum diesel blends. Among these problems, decreasing full load torque output and increasing NOx and BSFC are significantly important. Fuel injection parameter calibration and optimization experiments are carried out in an in-line 6-cylinder 8.82 liter turbocharged and intercooled common rail diesel, which is equipped with Denso ECD-U2 fuel injection system, SCR (Selective catalytic reduction) and DPF (diesel particulate filter). To avoid after-treatment apparatus' coupling influence and re-calibration, emission measure point is set in front of catalysts. The experiment adopts B20 biodiesel as test fuel.
X