Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Cycle Resolved Combustion and Pre-Ignition Diagnostic Employing Ion Current in a PFI Boosted SI Engine

2015-04-14
2015-01-0881
An ion current sensor is employed in a 4 cylinder production SI engine for combustion diagnosis during combustion process, knock, and low speed pre-ignition (LSPI) detection. The results show that the ion current peak value and ion current peak phase have strong correlation with the cylinder pressure and pressure peak phase respectively. The COV of ion current integral value is greater than the COV of IMEP at the same operating condition. Results show that the ion current signal is sensitive to different lambdas. Using ion current signal, the knock in any given cylinder can be detected. Importantly, the ion sensor successfully detected the low speed pre-ignition (LSPI) about more than 20 °CA before spark ignition.
Technical Paper

Effect of First Cycle Fuel Injection Timing on Performance of a PFI Engine during Quick Start for HEV Application

2011-04-12
2011-01-0886
Idle stopping is one of the most important fuel saving methods for hybrid electric vehicle (HEV). While the enriched injection strategy which was employed to ensure reliable ignition of first cycle will leads to even more fuel film stayed in the intake port, all of the liquid film will evaporate randomly and interfere the mixture air-fuel ratio of the followed cycles. The fuel transport of the first cycle should be enhanced to reduce the residual fuel film, and then the control of the cycle-by-cycle air-fuel ratio will become easier and the combustion and HC emissions will also be better. In this paper the mixture preparation characteristics of the unfired first cycle, as well as the combustion and HC emissions characteristics of the fired first cycle under various injection timing strategies such as close-valve injection, mid-valve injection, and open-valve injection were investigated.
Technical Paper

Spray Characteristics and Wall-impingement Process with Different Piston Tops for the Multi-hole Injector of DISI Gasoline Engines

2011-04-12
2011-01-1222
Spray characteristics and spray wall-impingement events are the key factors for the direct injection spark ignition (DISI) engines, affecting fuel/air mixture preparation and its combustion process. Thus, the spray characteristics of a multi-hole injector for DISI engines, such as spray tip penetration and spray cone angle were investigated in an optical chamber employing the high-speed shadow photography. Furthermore, the effects of the injection pressure, ambient pressure and piston top shape on the impinging spray development were studied in the optical chamber, when the impinging distance is 26.1 mm, corresponding to about 60 CAD ATDC. In addition, the SMD and wall film thickness of the spray impinging on the piston top were studied by means of CFD technique. The results showed that the ambient pressure had the greater effect on the changes of the spray penetration and spray cone angle than the injection pressure.
Technical Paper

Optimization of Control Strategy for Engine Start-stop in a Plug-in Series Hybrid Electric Vehicle

2010-10-25
2010-01-2214
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
Technical Paper

Power Matching and Control Strategy of Plug-in Series Hybrid Electric Car

2010-10-25
2010-01-2195
In this paper, based on the plug-in series hybrid electric vehicle development project, the vehicle technology solutions and the match of power system parameters were analyzed. The vehicle control strategies were identified and optimized according to plug-in hybrid vehicle features. The plug-in series hybrid, rule-based logic threshold switching control strategy, charge depleting (CD) mode and charge-sustaining (CS) mode are chosen according to the key factors, such as the environment, performance requirements, technical requirements and cost. And then the structure and model of vehicle control strategy were established to carry out vehicle energy management and power system control. The parameter selection, electric drive system matching, energy storage system design based on the requirement of vehicle performance, system architecture and control strategy are presented.
Technical Paper

Stratified Mixture Formation and Combustion Process for Wall-guided Stratified-charge DISI Engines with Different Piston Bowls by Simulation

2010-04-12
2010-01-0595
This paper presents the simulation of in-cylinder stratified mixture formation, spray motion, combustion and emissions in a four-stroke and four valves direct injection spark ignition (DISI) engine with a pent-roof combustion chamber by the computational fluid dynamics (CFD) code. The Extended Coherent Flame Combustion Model (ECFM), implemented in the AVL-Fire codes, was employed. The key parameters of spray characteristics related to computing settings, such as skew angle, cone angle and flow per pulse width with experimental measurements were compared. The numerical analysis is mainly focused on how the tumble flow ratio and geometry of piston bowls affect the motion of charge/spray in-cylinder, the formation of stratified mixture and the combustion and emissions (NO and CO₂) for the wall-guided stratified-charge spark-ignition DISI engine.
X