Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Lane Marking Detection for Highway Scenes based on Solid-state LiDARs

2021-12-15
2021-01-7008
Lane marking detection plays a crucial role in Autonomous Driving Systems or Advanced Driving Assistance System. Vision based lane marking detection technology has been well discussed and put into practical application. LiDAR is more stable for challenging environment compared to cameras, and with the development of LiDAR technology, price and lifetime are no longer an issue. We propose a lane marking detection algorithm based on solid-state LiDARs. First a series of data pre-processing operations were done for the solid-state LiDARs with small field of view, and the needed ground points are extracted by the RANSAC method. Then, based on the OTSU method, we propose an approach for extracting lane marking points using intensity information.
Technical Paper

Robust Multi-Lane Detection and Tracking in Temporal-Spatial Based on Particle Filtering

2019-04-02
2019-01-0885
The camera-based advanced driver assistance systems (ADAS) like lane departure warning system (LDWS) and lane keeping assist (LKA) can make vehicles safer and driving easier. Lane detection is indispensable for these lane-based systems for achieving vehicle local localization and behavior prediction. Since the vision is vulnerable to the variable environment conditions such as bad weather, occlusions and illumination, the robustness is important. In this paper, a robust algorithm for detecting and tracking multiple lanes with arbitrary shape is proposed. We extend the previously lane detection and tracking process from the space domain to the temporal-spatial domain by using a more robust and general multi-lane model. First, new slice images containing temporal information are generated from image sequences. Instead of binarization process, we use a more general detector for extracting the lane marker candidates with prior knowledge to generate the binary slice image.
Technical Paper

Study on a Fuzzy Q-Learning Approach Using the Driver Priori Knowledge for Intelligent Vehicles’ Autonomous Navigation and Control

2018-04-03
2018-01-1084
The functional elements of decision making system are fuzzy, adaptive and self-learning for intelligent ground vehicles. As is well-known, operating environment of unmanned ground vehicles (UGVs) is complex, unknown and time-changing. And on the other hand, exact dynamic model of the vehicle is relatively difficult to gain. However, the changing of special dynamic parameters and the man-made driving laws of velocities and running direction are easily available. Therefore, this paper attempts to provide an approach based on fuzzy Q-learning algorithm for studying autonomous navigation and control system’s design, which aims to make unmanned vehicles adaptive and robust under complex and time-changing environment. The presented approach utilizes the drivers’ empirical knowledge for.
X