Refine Your Search

Topic

Search Results

Technical Paper

Coordinated Charging and Dispatching for Large-Scale Electric Taxi Fleets Based on Bi-Level Spatiotemporal Optimization

2024-04-09
2024-01-2880
The operation management of electric Taxi fleets requires cooperative optimization of Charging and Dispatching. The challenge is to make real-time decisions about which is the optimal charging station or passenger for each vehicle in the fleet. With the rapid advancement of Vehicle Internet of Things (VIOT) technologies, the aforementioned challenge can be readily addressed by leveraging big data analytics and machine learning algorithms, thereby contributing to smarter transportation systems. This study focuses on optimizing real-time decision-making for charging and dispatching in large-scale electric taxi fleets to improve their long-term benefits. To achieve this goal, a spatiotemporal decision framework using Bi-level optimization is proposed. Initially, a deep reinforcement learning-based model is built to estimate the value of charging and order dispatching under uncertainty.
Technical Paper

Effect of Residence Time on Morphology and Nanostructure of Soot in Laminar Ethylene and Ammonia-Ethylene Flames

2024-04-09
2024-01-2385
As one of the pollutants that cannot be ignored, soot has a great impact on human health, environment, and energy conversion. In this investigation, the effect of residence time (25ms, 35ms, and 45ms) and ammonia on morphology and nanostructure of soot in laminar ethylene flames has been studied under atmospheric conditions and different flame heights (15 mm and 30 mm). The transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM) are used to obtain morphology of aggregates and nanostructure of primary particles, respectively. In addition, to analyze the nanostructure of the particles, an analysis program is built based on MATLAB software, which is able to obtain the fringe separation distance, fringe length, and fringe tortuosity parameters of primary particles, and has been verified by the multilayer graphene interlayer distance.
Technical Paper

RIO-Vehicle: A Tightly-Coupled Vehicle Dynamics Extension of 4D Radar Inertial Odometry

2024-04-09
2024-01-2847
Accurate and reliable localization in GNSS-denied environments is critical for autonomous driving. Nevertheless, LiDAR-based and camera-based methods are easily affected by adverse weather conditions such as rain, snow, and fog. The 4D Radar with all-weather performance and high resolution has attracted more interest. Currently, there are few localization algorithms based on 4D Radar, so there is an urgent need to develop reliable and accurate positioning solutions. This paper introduces RIO-Vehicle, a novel tightly coupled 4D Radar/IMU/vehicle dynamics within the factor graph framework. RIO-Vehicle aims to achieve reliable and accurate vehicle state estimation, encompassing position, velocity, and attitude. To enhance the accuracy of relative constraints, we introduce a new integrated IMU/Dynamics pre-integration model that combines a 2D vehicle dynamics model with a 3D kinematics model.
Technical Paper

CMM: LiDAR-Visual Fusion with Cross-Modality Module for Large-Scale Place Recognition

2023-12-20
2023-01-7039
LiDAR and camera fusion have emerged as a promising approach for improving place recognition in robotics and autonomous vehicles. However, most existing approaches often treat sensors separately, overlooking the potential benefits of correlation between them. In this paper, we propose a Cross- Modality Module (CMM) to leverage the potential correlation of LiDAR and camera features for place recognition. Besides, to fully exploit potential of each modality, we propose a Local-Global Fusion Module to supplement global coarse-grained features with local fine-grained features. The experiment results on public datasets demonstrate that our approach effectively improves the average recall by 2.3%, reaching 98.7%, compared with simply stacking of LiDAR and camera.
Technical Paper

A Novel LiDAR Anchor Constraint Method for Localization in Challenging Scenarios

2023-12-20
2023-01-7053
Positioning system is a key module of autonomous driving. As for LiDAR SLAM system, it faces great challenges in scenarios where there are repetitive and sparse features. Without loop closure or measurements from other sensors, odometry match errors or accumulated errors cannot be corrected. This paper proposes a construction method of LiDAR anchor constraints to improve the robustness of the SLAM system in the above challenging environment. We propose a robust anchor extraction method that adaptively extracts suitable cylindrical anchors in the environment, such as tree trunks, light poles, etc. Skewed tree trunks are detected by feature differences between laser lines. Boundary points on cylinders are removed to avoid misleading. After the appropriate anchors are detected, a factor graph-based anchor constraint construction method is designed. Where direct scans are made to anchor, direct constraints are constructed.
Technical Paper

Cooperative Lane Change Control Based on Null-Space-Behavior for a Dual-Column Intelligent Vehicle Platoon

2023-12-20
2023-01-7064
With the extension of intelligent vehicles from individual intelligence to group intelligence, intelligent vehicle platoons on intercity highways are important for saving transportation costs, improving transportation efficiency and road utilization, ensuring traffic safety, and utilizing local traffic intelligence [1]. However, there are several problems associated with vehicle platoons including complicated vehicle driving conditions in or between platoon columns, a high degree of mutual influence, dynamic optimization of the platoon, and difficulty in the cooperative control of lane change. Aiming at the dual-column intelligent vehicle platoon control (where “dual-column” refers to the vehicle platoon driving mode formed by multiple vehicles traveling in parallel on two adjacent lanes), a multi-agent model as well as a cooperative control method for lane change based on null space behavior (NSB) for unmanned platoon vehicles are established in this paper.
Technical Paper

Electro-Hydraulic Composite Braking Control Optimization for Front-Wheel-Driven Electric Vehicles Equipped with Integrated Electro-Hydraulic Braking System

2023-11-05
2023-01-1864
With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions.
Technical Paper

Transient Temperature Field Prediction of PMSM Based on Electromagnetic-Heat-Flow Multi-Physics Coupling and Data-Driven Fusion Modeling

2023-10-30
2023-01-7031
With the increase of motor speed and the deterioration of operating environment, it is more difficult to predict the transient temperature field (TTF). Meanwhile, it is difficult to obtain the temperature test dataset of key nodes under various complete road conditions, so the cost of bench test or real vehicle test is high. Therefore, it is of great significance to establish a high fidelity, lightweight temperature prediction model which can be applied to real vehicle thermal management for ensuring the safe and stable operation of motor. In this paper, a physical model simulating electromagnetic-heat-flow multi-physical coupling of permanent magnet synchronous motor (PMSM) in electric drive gearbox (EDG) is established, and the correctness of the model is verified by the actual EDG bench test.
Technical Paper

MPC-Based Downhill Coasting-Speed Control Method for Motor-Driven Vehicles

2023-04-11
2023-01-0544
To improve the maneuverability and energy consumption of an electrical vehicle, a two-level speed control method based on model predictive control (MPC) is proposed for accurate control of the vehicle during downhill coasting. The targeted acceleration is planned using the anti-interference speed filter and MPC algorithm in the upper-level controller and executed using the integrated algorithm with the inverse vehicle dynamics and proportional-integral-derivative control model (PID) in the lower-level controller, improving the algorithm’s anti-interference performance and road adaptability. Simulations and vehicle road tests showed that the proposed method could realize accurate real-time speed control of the vehicle during downhill coasting. It can also achieve a smaller derivation between the actual and targeted speeds, as well as more stable speeds when the road resistance changes abruptly, compared with the conventional PID method.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

Intersection Traffic Safety Evaluation Using Potential Energy Filed Method

2023-04-11
2023-01-0855
The intersection is recognized as the most dangerous area because of the restricted road structures and indeterminate traffic regulations. Therefore, according to the Vehicle-to-everything (V2X) communication, Intelligent Transportation Systems (ITS), and Digital Twin data, we present a potential energy field method to establish the general characteristics of intersection traffic safety, evaluate the safety situation of intersection and assist intersection traffic participants in passing through the intersection safer and more efficient. The resulting potential energy field method is established by the contour line of traffic participants' potential energy, which is constructed as a superposition of disparate energies, such as boundary potential energy, body potential energy, and velocity potential energy. The intersection traffic safety is evaluated by the potential energy field characteristic of simultaneous intersection traffic participants.
Technical Paper

The Pendulum Motion Measured Digital Photogrammetry for a Centrifugal Pendulum Vibration Absorber

2023-04-11
2023-01-0124
Centrifugal Pendulum Vibration Absorber (CPVA for short) is used to absorb torsional vibrations caused by the shifting motion of the engine. It is increasingly used in modern powertrains. In the research of the dynamic characteristics of the CPVA, it is necessary to obtain the real motion of the pendulum to compensate the fitting performance of mathematical model. The usual method is to install an angle sensor to measure the movement of the pendulum. On the one hand, the installation of the sensor will affect its movement to a certain extent, so that the measurement results do not match the actual motion. On the other hand, the motion of the pendulum is not only the rotational motion around the rotational axis of the CPVA rotor, but also has translation relative to it. As a result, it is difficult to obtain accurate motion only by the angle sensor. We proposed a non-contact centrifugal pendulum motion measurement method.
Technical Paper

Vehicle Kinematics-Based Image Augmentation against Motion Blur for Object Detectors

2023-04-11
2023-01-0050
High-speed vehicles in low illumination environments severely blur the images used in object detectors, which poses a potential threat to object detector-based advanced driver assistance systems (ADAS) and autonomous driving systems. Augmenting the training images for object detectors is an efficient way to mitigate the threat from motion blur. However, little attention has been paid to the motion of the vehicle and the position of objects in the traffic scene, which limits the consistence between the resulting augmented images and traffic scenes. In this paper, we present a vehicle kinematics-based image augmentation algorithm by modeling and analyzing the traffic scenes to generate more realistic augmented images and achieve higher robustness improvement on object detectors against motion blur. Firstly, we propose a traffic scene model considering vehicle motion and the relationship between the vehicle and the object in the traffic scene.
Technical Paper

A Unified Frequency Understanding of Image Corruptions and its Application to Autonomous Driving

2023-04-11
2023-01-0060
Image corruptions due to noise, blur, contrast change, etc., could lead to a significant performance decline of Deep Neural Networks (DNN), which poses a potential threat to DNN-based autonomous vehicles. Previous works attempted to explain corruption from a Fourier perspective. By comparing the absolute Fourier spectrum difference between corrupted images and clean images in the RGB color space, they regard the noise from some corruptions (Gaussian noise, defocus blur, etc.) as concentrating on the high-frequency components while others (contrast, fog, etc.) concentrate on the low-frequency components. In this work, we present a new perspective that unifies corruptions as noise from high frequency and thus propose an image augmentation algorithm to achieve a more robust performance against common corruptions. First, we notice the 1/fα statistical rule of the natural image's spectrum and the channels-wise differential sensitivity on the YCbCr color space of the Human Visual System.
Technical Paper

Study on the Diffusion Law of Electric Vehicle Sharing in Complex Social Network Environment

2023-04-11
2023-01-0889
Electric vehicle sharing (EVS) can alleviate traffic congestion and reduce emissions. However, the poor user experience and lack of word-of-mouth effect lead to the low utilization rate of EVS in China. Based on the demand and pain points of EVS, this paper concentrates on travel mode choice behavior of consumers under social networks and establishes an agent-based model for EVS diffusion. The results show that: (1) Social networks can promote the diffusion of EVS and the number of opinion leaders and the number of fans of opinion leaders play an important role. (2) Consumers are more sensitive to travel costs than non-travel time now, but with the improvement of demand for travel experience, consumers are more concerned with non-travel time. (3) The non-travel time of EVS needs to be reduced to 9, 8 and 7 minutes respectively to retain users when the travel cost increases to 0.7, 0.8 and 0.9 Yuan/minute.
Technical Paper

Object Detection and Tracking Based on Lidar for Autonomous Vehicles on Highway Conditions

2022-12-22
2022-01-7103
Multiple object detection and tracking are central aspects of modeling the environment of autonomous vehicles. Lidar is a necessary component in the autonomous driving system. Without Lidar sensors, we will most probably not see fully self-driving cars become a reality. Lidar sensing gives us high-resolution data by sending out thousands of laser signals. In advanced driver assistance systems or automated driving systems, 3-D point clouds from lidar scans are typically used to measure physical surfaces. Lidar is a powerful sensor that you can use in challenging environments where other sensors might prove inadequate. Lidar can provide a complete 360-degree view of a scene. This paper designs Lidar based multi-target detection and tracking system based on the traditional point cloud processing method including down-sampling, denoising, segmentation, and clustering objects.
Technical Paper

Performance Limitations Analysis of Visual Sensors in Low Light Conditions Based on Field Test

2022-12-22
2022-01-7086
Visual sensors are widely used in autonomous vehicles (AVs) for object detection due to the advantages of abundant information and low-cost. But the performance of visual sensors is highly affected by low light conditions when AVs driving at nighttime and in the tunnel. The low light conditions decrease the image quality and the performance of object detection, and may cause safety of the intended functionality (SOTIF) problems. Therefore, to analyze the performance limitations of visual sensors in low light conditions, a controlled light experiment on a proving ground is designed. The influences of low light conditions on the two-stage algorithm and the single-stage algorithm are compared and analyzed quantificationally by constructing an evaluation index set from three aspects of missing detection, classification, and positioning accuracy.
Technical Paper

Micro Gesture Recognition of the Millimeter-Wave Radar Based on Multi-branch Residual Neural Network

2022-12-22
2022-01-7074
A formal gesture recognition based on optics has limitations, but millimeter-wave (MMW) radar has shown significant advantages in gesture recognition. Therefore, the MMW radar has become the most promising human-computer interaction equipment, which can be used for human-computer interaction of vehicle personnel. This paper proposes a multi-branch network based on a residual neural network (ResNet) to solve the problems of insufficient feature extraction and fusion of the MMW radar and immense algorithm complexity. By constructing the gesture sample library of six gestures, the MMW radar signal is processed and coupled to establish the relationship between the motion parameters of the distance, speed, and angle of the gesture information and time, and the depth features are extracted. Then the three depth features are fused. Finally, the classification and recognition of MMW radar gesture signals are realized through the full connection layer.
Technical Paper

Research on Collision Avoidance and Vehicle Stability Control of Intelligent Driving Vehicles in Harsh Environments

2022-12-16
2022-01-7128
Aiming at the problems of ineffective collision avoidance and vehicle instability in the process of vehicle emergency braking in road conditions with low adhesion and sudden change in adhesion coefficient, a stability-coordinated emergency braking and collision avoidance control system SEBCACS) is proposed. First, according to the motion of the ego vehicle and the target vehicle as well as the road adhesion conditions, a collision time model is proposed for evaluating the vehicle collision risk, and the expected deceleration required to avoid the collision is calculated. Then, the MPC method is used to calculate the yaw moment generated by the four-wheel braking force required to maintain vehicle stability according to the actual and reference yaw rate and side slip angle deviation. Then it is decided whether to implement additional yaw moment control according to the body stability evaluation results.
Technical Paper

Improved Energy Management with Vehicle Speed and Weight Recognition for Hybrid Commercial Vehicles

2022-10-28
2022-01-7052
The driving conditions of commercial logistics vehicles have the characteristics of combined urban and suburban roads with relatively fixed mileage and cargo load alteration, which affect the vehicular fuel economy. To this end, an adaptive equivalent consumption minimization strategy (A-ECMS) with vehicle speed and weight recognition is proposed to improve the fuel economy for a range-extender electric van for logistics in this work. The driving conditions are divided into nine representative groups with different vehicle speed and weight statuses, and the driving patterns are recognized with the use of the bagged trees algorithm through vehicle simulations. In order to generate the reference SOC near the optimal values, the optimal SOC trajectories under the typical driving cycles with different loads are solved by the shooting method and the optimal slopes for these nine patterns are obtained.
X