Refine Your Search

Topic

Search Results

Technical Paper

Numerical Study on the Combustion Characteristics of an Ammonia/Hydrogen Engine with Active Prechamber Ignition

2024-04-09
2024-01-2104
Both ammonia and hydrogen, as zero-carbon fuels for internal combustion engines, are received growing attention. However, ammonia faces a challenge of low flame propagation velocity. Through injecting hydrogen into active pre-chamber, its jet flame ignition can accelerate the flame propagation velocity of ammonia. The influence of different pre-chamber structures on engine combustion characteristics is significant. In this paper, numerical studies were conducted to assess the impact of various pre-chamber structures and hydrogen injection strategy on the combustion characteristics of ammonia/hydrogen engines while maintaining the equivalent ratio of 1.0. The results indicate that the jet angle significantly affects the position of jet flame and the followed main combustion. The in-cylinder combustion pressure peaks at jet angle of 150°. Meanwhile, the combustion duration of 150° is shortened by 74.3% compared with that of 60°.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Simulation Study on the Effect of In-Cylinder Water Injection Mass on Engine Combustion and Emissions Characteristics

2023-10-30
2023-01-7004
The rapid development of the automobile industry has brought energy and environmental issues that scholars are increasingly concerning about. Improving efficiency and reducing emissions are currently two hot topics in the internal combustion engine industry. Direct water injection technology (DWI) can effectively reduce the cylinder temperature, which is due to the absorption of the heat by the injecting liquid water. In addition, lower temperature in the cylinder will reduce the formation of NO. In this paper, a CFD simulation of DWI application in a lean-burning single-cylinder engine with pre-chamber jet ignition was carried out. And the engine was experimentally tested for the simulation model validation. And then the effect of DWI strategy with different injecting water mass on the combustion and emissions characteristics are analyzed. Physically, injected water not only absorbs heat but also provides heat insulation.
Technical Paper

Energy Management Based on D4QN Reinforcement Learning for a Series-Parallel Multi-Speed Hybrid Electric Vehicle

2023-10-30
2023-01-7007
Reinforcement learning is a promising approach to solve the energy management for hybrid electric vehicles. In this paper, based on the DQN (Deep Q-Network) reinforcement learning algorithm which is widely used at present, double DQN, dueling DQN and learning from demonstration are integrated; states, actions, rewards and the experience pool based on the characteristics of series-parallel multi-speed hybrid powertrain are designed; the hybrid energy management strategy based on D4QN (Double Dueling Deep Q-Network with Demonstrations) algorithm is established. Based on the training results of D4QN algorithm, multi-parameter analysis under state and action space, HCU (Hybrid control unit) application and MIL (Model in-loop) test research are conducted.
Technical Paper

The Prediction for Adjustable Ability of Electric Vehicle Aggregator Based on Deep-Belief-Network

2023-04-11
2023-01-0062
In recent years, one of the keys to achieving energy conservation and emission reduction and practicing sustainable development strategies is the wide-area access of large-scale electric vehicles. The charging behavior of large-scale electric vehicles has brought great challenges to the load management and adjustment capacity determination of the power system. Therefore, the prediction of adjustable ability of electric vehicle aggregator based on deep-belief-network is proposed in this paper. First of all, this paper selects the indicators related to the load of the electric bus station: including the arrival time, departure time, and daily mileage of the electric vehicle, from which the SOC variation trend and accurate charging demand of the single electric vehicle are obtained.
Technical Paper

Analytical Study on the Fuel-Saving Potentials of a Series Hybrid Electric Vehicle

2023-04-11
2023-01-0468
The fuel-saving potential of a series hybrid electric vehicle (SHEV) was investigated in this work based on the future goals and technical roadmaps proposed by China's automobile and internal combustion engine (ICE) industry. The genetic algorithm optimization method and dynamic programming energy management strategy are used to optimize the key component parameters of a typical SHEV SUV to improve the fuel economy of the vehicle. Results showed that the fuel consumption of the vehicle would be 3.24 L / 100km in 2035, which is 37.21% less than 5.16 L / 100km in 2020, following the industries’ roadmaps. The results also indicated that the improvement of the ICE’s thermal efficiency is the main reason for the decrease of the vehicle’s fuel consumption. In addition, the improvement of working points and the reduction of energy losses of the key components also contribute to the improvement of the fuel economy.
Technical Paper

Assessing and Characterizing the Effect of Altitude on Fuel Economy, Particle Number and Gaseous Emissions Performance of Gasoline Vehicles under Real Driving

2023-04-11
2023-01-0381
High altitudes have a significant effect on the real driving emissions (RDE) of vehicles due to lower pressure and insufficient oxygen concentration. In addition, type approval tests for light-duty vehicles are usually conducted at altitudes below 1000 m. In order to investigate the influence of high altitude on vehicles fuel economy and emissions, RDE tests procedure had been introduced in the China VI emission regulations. In this study, the effect of altitude on fuel economy and real road emissions of three light-duty gasoline vehicles was investigated. The results indicated that for vehicles fuel economy, fuel consumption (L/100 km) for the tested vehicles decreased while the mean exhaust temperature increased with an increase in altitudes. Compared to near sea level, the fuel consumption (L/100 km) of the tested vehicle was reduced by up to 23.28%.
Technical Paper

A method of Speed Prediction Based on Markov Chain Theory Using Actual Driving Cycle

2022-12-22
2022-01-7081
As a prerequisite for energy management of hybrid vehicles, the results of speed prediction can optimize the performance of vehicles and improve fuel efficiency. Energy management strategies are usually developed based on standard driving cycles, which are too generalized to show the variability of driving conditions in different time and locations. Therefore, this paper constructs a representative driving cycle based on driving data of the corresponding time and location, used as historical information for prediction. We propose a method to construct the driving cycle based on Markov chain theory before constructing the prediction model. In this paper, multiple prediction methods are compared with traditional parametric methods. The difference in prediction accuracy between multiple prediction methods under the single time scale and multiple time scale were compared, which further verified the advantages of the speed prediction method based on Markov chain theory.
Technical Paper

Improved Energy Management with Vehicle Speed and Weight Recognition for Hybrid Commercial Vehicles

2022-10-28
2022-01-7052
The driving conditions of commercial logistics vehicles have the characteristics of combined urban and suburban roads with relatively fixed mileage and cargo load alteration, which affect the vehicular fuel economy. To this end, an adaptive equivalent consumption minimization strategy (A-ECMS) with vehicle speed and weight recognition is proposed to improve the fuel economy for a range-extender electric van for logistics in this work. The driving conditions are divided into nine representative groups with different vehicle speed and weight statuses, and the driving patterns are recognized with the use of the bagged trees algorithm through vehicle simulations. In order to generate the reference SOC near the optimal values, the optimal SOC trajectories under the typical driving cycles with different loads are solved by the shooting method and the optimal slopes for these nine patterns are obtained.
Technical Paper

Modeling Analysis of Thermal Efficiency Improvement up to 45% of a Turbocharged Gasoline Engine

2022-10-28
2022-01-7051
Numerical analysis of thermal efficiency improvement up to 45% of an 1.8-liter turbocharged direct-injection (DI) gasoline engine was conducted in this study in response to the need of improving vehicle fuel economy. 1D thermodynamics simulations and 3D computational fluid dynamics (CFD) modeling were carried out to investigate the technical approaches for improving engine thermal efficiency. Effects of various technologies on the improvement in the engine performance were evaluated, and then the technical routes to achieve 41% and 45% brake thermal efficiency were summarized, respectively. It is concluded that 41% thermal efficiency can be reached under stoichiometric combustion conditions, while it is expected lean burn technology is needed for the target of 45% thermal efficiency. The effects of high tumble intake flow on accelerating burning speed and of high compression ratio on intensifying knocking were analyzed.
Technical Paper

Separation of Average Torque and Torque Ripple in PMSMs Considering Saturation, Cross-Coupling and Flux Harmonics Using Frozen Permeability Method

2022-03-29
2022-01-0730
The separation and analysis of the torque of the permanent magnet synchronous motor is of great significance for optimizing the torque output of the motor. Based on the frozen permeability method, the virtual work principle (VWP) or the Maxwell stress tensor method (MSTM) is often used to separate the torque for torque analysis. However, considering the influence of non-ideal factors such as motor saturation, cross-coupling and flux harmonics, there are differences in torque separation between the VWP and the MSTM, which has been researched and analyzed in this paper. Based on this, for the assisted airspace barrier design of a surface-inserted permanent magnet synchronous motor, to conduct theoretical research on the torque optimization design, this paper uses the VWP to separate the average torque and the MSTM to separate the torque ripple.
Technical Paper

Design and Optimization of an SUV Engine Compartment Bottom Shield Based on Kriging Interpolation and Multi-Island Genetic Algorithm

2022-03-29
2022-01-0172
Engine compartment thermal management can achieve energy saving and emission reduction. The structural design of the components in the engine compartment affects the thermal fluid flow performance, which in turn affects the thermal management performance. In this paper, based on the phenomenon that the surface of the parts in the engine compartment is abnormally high due to design defects of an SUV engine compartment bottom shield, the engine compartment is modeled and analyzed by CFD using the software STAR-CCM+. It is not conducive to the heat dissipation, so the bottom shield needs to be redesigned. To redesign the shape of the bottom shield, four dimensions and one coordinate value were selected as the design parameters, and the oil pan maximum surface temperature was selected as the optimization target. The Latin hypercube sampling method was used to sample the space uniformly, and the experimental design plan was constructed and simulated.
Technical Paper

A Comparative Study on Energy Management Strategies for an Automotive Range-Extender Electric Powertrain

2021-12-31
2021-01-7027
In this work, the influences of various real-timely available energy management strategies on vehicle fuel consumption (VFC) and energy flow of a range-extender electric vehicle were studied The strategies include single-point, multi-point, speed-following, and equivalent consumption minimization strategy. In addition, the dynamic programming method which cannot be used in real time, but can provide the optimal solution for a known drive situation was used for comparison. VFCs and energy flow characteristics with different strategies under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) were obtained through computer modeling, and the results were verified experimentally on a range-extender test bench. The experimental results are consistent with the modeled ones in general with a maximum deviation of 4.11%, which verifies the accuracy of the simulation models.
Technical Paper

Numerical Simulation of Surface Temperature Fluctuation and Thermal Barrier Coating at the Piston Top for a Diesel Engine Performance Improvement

2021-04-06
2021-01-0229
Low heat rejection (LHR) combustion has been recognized as a potential technology for further fuel economy improvement. This paper aims to simulate how the piston top’s thermal barrier coating affects the engine’s thermal efficiency and emissions. Accordingly, a Thin-wall heat transfer model in AVL Fire software was employed. The effects of increasing the piston top surface temperature, comparing different thermal barrier coating material, were simulated at the engine’s rated power operating point, so as the piston top’s surface roughness. In comparison to a standard diesel engine, the indicated thermal efficiency (ITE) could increase by 0.4% when the surface temperature of the piston top changed from 575K to 775K.
Technical Paper

Optimization of Speed Fluctuation of Internal Combustion Engine Range Extender by a Dual Closed-Loop Control Strategy

2021-04-06
2021-01-0782
With the increasing concern on environmental pollution and CO2 emission all over the world, range-extended electrical vehicle (REEV) has gradually got more attention because it could avoid the mileage anxiety of the battery electrical vehicles (BEV) and get high energy efficiency. Nevertheless, NVH performance of internal combustion engine range extender (ICRE) is a critical problem that affects the driving experiences for REEV. In this paper, a two-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially mounted to run as an ICRE. The ICRE control system was established based on Compact RIO hardware and LabVIEW, who has the functions of the intake throttle PID closed-loop control, autonomous ICRE operation control, and speed PID closed-loop control. In this paper, the gasoline engine was first driven to the idle condition by PMSM in speed-control mode.
Journal Article

The Control Strategy for 4WD Hybrid Vehicle Based on Wavelet Transform

2021-04-06
2021-01-0785
In this paper, in order to avoid the frequent switching of engine operating points and improve the fuel economy during driving, this paper proposes a control strategy for the 4-wheel drive (4WD) hybrid vehicle based on wavelet transform. First of all, the system configuration and the original control strategy of the 4WD hybrid vehicle were introduced and analyzed, which summarized the shortcomings of this control strategy. Then, based on the analyze of the original control strategy, the wavelet transform was used to overcome its weaknesses. By taking advantage over the superiority of the wavelet transform method in multi signal disposition, the demand power of vehicle was decomposed into the stable drive power and the instantaneous response power, which were distributed to engine and electric motor respectively. This process was carried out under different driving modes.
Technical Paper

Study on the Performance-Determining Factors of Commercially Available MEA in PEMFCs

2020-04-14
2020-01-1171
Proton exchange membrane fuel cells (PEMFC), which convert the chemical energy into electrical energy directly through electrochemical reactions, are widely considered as one of the best power sources for new energy vehicles (NEV). Some of the major advantages of a PEMFC include high power density, high energy conversion efficiency, minimum pollution, low noise, fast startup and low operating temperature. The Membrane Electrode Assembly (MEA) is one of the core components of fuel cells, which composes catalyst layers (CL) coated proton exchange membrane (PEM) and gas diffusion layers (GDL). The performance of MEA is closely related to mass transportation and the rate of electrochemical reaction. The MEA plays a key role not only in the performance of the PEMFCs, but also for the reducing the cost of the fuel cells, as well as accelerating the commercial applications. Commercialized large-size MEA directly plays a major role in determining fuel cell stack and vehicle performance.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Technical Paper

Effect of Hydrous Ethanol Combined with EGR on Performance of GDI Engine

2020-04-14
2020-01-0348
In recent years, particulate matters (PM) emissions from gasoline direct injection (GDI) engines have been gradually paid attention to, and the hydrous ethanol has a high oxygen content and a fast burning rate, which can effectively improve the combustion environment. In addition, Exhaust gas recirculation (EGR) can effectively reduce engine NOx emissions, and combining EGR technology with GDI engines is becoming a new research direction. In this study, the effects of hydrous ethanol gasoline blends on the combustion and emission characteristics of GDI engines are analyzed through bench test. The results show that the increase of the proportion of hydrous ethanol can accelerate the burning rate, shorten the combustion duration by 7°crank angle (CA), advance the peak moment of in-cylinder pressure and rate of heat release (RoHR) and improve the combustion efficiency. The hydrous ethanol gasoline blends can effectively improve the gaseous and PM emissions of the GDI engine.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
X