Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Study on Thermal Management Strategy of the Exhaust Gas of a Heavy-Duty Diesel Engine Based on In-Cylinder Injection Parameters

2020-04-14
2020-01-0621
The aftertreatment system is indispensable for the removal of the noxious pollutants emitted by diesel engines, whose efficiency depends largely on the exhaust gas temperature. Therefore, this study proposes a thermal management strategy including post injection, intake throttling and late post injection to improve the efficiency of the aftertreatment system for a heavy-duty diesel engine. In the experiments, the effects of main injection, post injection, injection pressure and throttle opening on the exhaust gas temperature at diesel oxidation catalyst (DOC) inlet were studied, with the influence of late post injection on the exhaust gas temperature at DOC outlet also investigated. The results showed that the reasonable control of throttle opening and post injection (such as the adjustment of injection timing and injection quantity) can significantly improve the average temperature at DOC inlet from 237.8°C to 333.6°C in the WHTC, with an increase of 40.3%.
Technical Paper

Comparison of Different Energy Storage Systems for Range-Extended Electric Urban Bus

2016-09-27
2016-01-8093
Recent years, electric vehicles (EVs) have been widely used as urban transit buses in China, but high costs and a dwindling driving distance caused mainly by relatively frequent usage rate have put the electric bus in a difficult position. Range-extended electric bus (REEbus) is taken as an ideal transitional powertrain configuration, but its efficiency is not so high. Besides, with less batteries to endure more frequently charging and discharging, the lifecycle of battery pack can also be shorten. Aiming at it, range-extended electric powertrains with diverse energy storage systems (ESSs) and proper auxiliary power unit (APU) control strategies are matched and compared to find most proper ESS configuration for REEbus through simulation, which is based on a 12 meter-long urban bus.
Technical Paper

Fuel Economy and Emissions of a 7L Common Rail Diesel Engine during Torque Rise Transient Process

2015-04-14
2015-01-1068
Previous studies have indicated that longer torque increase time benefits the reduction of emissions during transient process for a diesel engine. However, quantitative conclusions on reduction of emissions and effects on fuel economy have not been made clear so far. The aim of this study was to evaluate the transient process of diesel engine under different torque increase time, and to find the quantitative statement between torque increase time, fuel economy and engine-out emissions. To do this, experiment was carried out on a 7L common rail diesel engine used for commercial vehicles. Three engine speeds (1100r·min−1, 1300r·min−1 and 1500r·min−1) were chosen to represent an engine working range. For each speed, the engine torque is increased within different time (0.5s, 1s, 2s and 5s). It was shown that, in the transient process mentioned above, engine torque increase time effects fuel economy, smoke opacity and CO emission.
X