Refine Your Search

Topic

Search Results

Technical Paper

Simulative Assessments of Cyclic Queuing and Forwarding with Preemption in In-Vehicle Time-Sensitive Networking

2024-04-09
2024-01-1986
The current automotive industry has a growing demand for real-time transmission to support reliable communication and for key technologies. The Time-Sensitive Networking (TSN) working group introduced standards for reliable communication in time-critical systems, including shaping mechanisms for bounded transmission latency. Among these shaping mechanisms, Cyclic Queuing and Forwarding (CQF) and frame preemption provide deterministic guarantees for frame transmission. However, despite some current studies on the performance analysis of CQF and frame preemption, they also need to consider the potential effects of their combined usage on frame transmission. Furthermore, there is a need for more research that addresses the impact of parameter configuration on frame transmission under different situations and shaping mechanisms, especially in the case of mechanism combination.
Technical Paper

Analysis and Design of Suspension State Observer for Wheel Load Estimation

2024-04-09
2024-01-2285
Tire forces and moments play an important role in vehicle dynamics and safety. X-by-wire chassis components including active suspension, electronic powered steering, by-wire braking, etc can take the tire forces as inputs to improve vehicle’s dynamic performance. In order to measure the accurate dynamic wheel load, most of the researches focused on the kinematic parameters such as body longitudinal and lateral acceleration, load transfer and etc. In this paper, the authors focus on the suspension system, avoiding the dependence on accurate mass and aerodynamics model of the whole vehicle. The geometry of the suspension is equated by the spatial parallel mechanism model (RSSR model), which improves the calculation speed while ensuring the accuracy. A suspension force observer is created, which contains parameters including spring damper compression length, push rod force, knuckle accelerations, etc., combing the kinematic and dynamic characteristic of the vehicle.
Technical Paper

Uniformity Identification and Sensitivity Analysis of Water Content of Each PEM Fuel Cell Based on New Online High Frequency Resistance Measurement Technique

2024-04-09
2024-01-2189
Water content estimation is a key problem for studying the PEM fuel cell. When several hundred fuel cells are connected in serial and their active surface area is enlarged for sufficient power, the difference between cells becomes significant with respect to voltage and water content. The voltage of each cell is measurable by the cell voltage monitor (CVM) while it is difficult to estimate water content of the individual. Resistance of the polymer electrolyte membrane is monotonically related to its water content, so that the new online high frequency resistance (HFR) measurement technique is investigated to identify the uniformity of water content between cells and analyze its sensitivity to operating conditions in this paper. Firstly, the accuracy of the proposed technique is experimentally validated to be comparable to that of a commercialized electrochemical impedance spectroscopy (EIS) measurement equipment.
Technical Paper

Revealing the Impact of Mechanical Pressure on Lithium-Ion Pouch Cell Formation and the Evolution of Pressure During the Formation Process

2024-04-09
2024-01-2192
The formation is a crucial step in the production process of lithium-ion batteries (LIBs), during which the solid electrolyte interphase (SEI) is formed on the surface of the anode particles to passivate the electrode. It determines the performance of the battery, including its capacity and lifetime. A meticulously designed formation protocol is essential to regulate and optimize the stability of the SEI, ultimately achieving the optimal performance of the battery. Current research on formation protocols in lithium-ion batteries primarily focuses on temperature, current, and voltage windows. However, there has been limited investigation into the influence of different initial pressures on the formation process, and the evolution of cell pressure during formation remains unclear. In this study, a pressure-assisted formation device for lithium-ion pouch cells is developed, equipped with pressure sensors.
Technical Paper

Risk field enhanced game theoretic model for interpretable and consistent lane-changing decision makings

2024-04-09
2024-01-2566
This paper presents an integrated modeling approach for real-time discretionary lane-changing decisions by autonomous vehicles, aiming to achieve human-like behavior. The approach incorporates a two-player normal-form game and a novel risk field method. The normal-form game represents the strategic interactions among traffic participants. It captures the trade-offs between lane-changing benefits and risks based on vehicle motion states during a lane change. By continuously determining the Nash equilibrium of the game at each time step, the model decides when it is appropriate to change the lane. A novel risk field method is integrated with the game to model risks in the game pay-offs. The risk field introduces regions along the desired target lane with different time headway ranges and risk weights, capturing traffic participants' complex risk perceptions and considerations in lane-changing scenarios.
Technical Paper

Combining Dynamic Movement Primitives and Artificial Potential Fields for Lane Change Obstacle Avoidance Trajectory Planning of Autonomous Vehicles

2024-04-09
2024-01-2567
Lane change obstacle avoidance is a common driving scenario for autonomous vehicles. However, existing methods for lane change obstacle avoidance in vehicles decouple path and velocity planning, neglecting the coupling relationship between the path and velocity. Additionally, these methods often do not sufficiently consider the lane change behaviors characteristic of human drivers. In response to these challenges, this paper innovatively applies the Dynamic Movement Primitives (DMPs) algorithm to vehicle trajectory planning and proposes a real-time trajectory planning method that integrates DMPs and Artificial Potential Fields (APFs) algorithm (DMP-Fs) for lane change obstacle avoidance, enabling rapid coordinated planning of both path and velocity. The DMPs algorithm is based on the lane change trajectories of human drivers. Therefore, this paper first collected lane change trajectory samples from on-road vehicle experiments.
Technical Paper

A Method of Generating a Composite Dataset for Monitoring of Non-Driving Related Tasks

2024-04-09
2024-01-2640
Recently, several datasets have become available for occupant monitoring algorithm development, including real and synthetic datasets. However, real data acquisition is expensive and labeling is complex, while virtual data may not accurately reflect actual human physiology. To address these issues and obtain high-fidelity data for training intelligent driving monitoring systems, we have constructed a hybrid dataset that combines real driving image data with corresponding virtual data generated from 3D driving scenarios. We have also taken into account individual anthropometric measures and driving postures. Our approach not only greatly enriches the dataset by using virtual data to augment the sample size, but it also saves the need for extensive annotation efforts. Besides, we can enhance the authenticity of the virtual data by applying ergonomics techniques based on RAMSIS, which is crucial in dataset construction.
Technical Paper

RIO-Vehicle: A Tightly-Coupled Vehicle Dynamics Extension of 4D Radar Inertial Odometry

2024-04-09
2024-01-2847
Accurate and reliable localization in GNSS-denied environments is critical for autonomous driving. Nevertheless, LiDAR-based and camera-based methods are easily affected by adverse weather conditions such as rain, snow, and fog. The 4D Radar with all-weather performance and high resolution has attracted more interest. Currently, there are few localization algorithms based on 4D Radar, so there is an urgent need to develop reliable and accurate positioning solutions. This paper introduces RIO-Vehicle, a novel tightly coupled 4D Radar/IMU/vehicle dynamics within the factor graph framework. RIO-Vehicle aims to achieve reliable and accurate vehicle state estimation, encompassing position, velocity, and attitude. To enhance the accuracy of relative constraints, we introduce a new integrated IMU/Dynamics pre-integration model that combines a 2D vehicle dynamics model with a 3D kinematics model.
Technical Paper

CMM: LiDAR-Visual Fusion with Cross-Modality Module for Large-Scale Place Recognition

2023-12-20
2023-01-7039
LiDAR and camera fusion have emerged as a promising approach for improving place recognition in robotics and autonomous vehicles. However, most existing approaches often treat sensors separately, overlooking the potential benefits of correlation between them. In this paper, we propose a Cross- Modality Module (CMM) to leverage the potential correlation of LiDAR and camera features for place recognition. Besides, to fully exploit potential of each modality, we propose a Local-Global Fusion Module to supplement global coarse-grained features with local fine-grained features. The experiment results on public datasets demonstrate that our approach effectively improves the average recall by 2.3%, reaching 98.7%, compared with simply stacking of LiDAR and camera.
Technical Paper

An Road Boundary Detection Algorithm Based on Radar that Can Improve Multiple-Target Tracking Performance for Autonomous Vehicles on Highway Condition

2023-12-20
2023-01-7042
Radar is playing more and important role in multiple object detection and tracking system due to the fact that Radar can not only determine the velocity instantly but also it is less influenced by environment conditions. However, Radar faces the problem that it has many detection clutter,false alarms and detection results are easily affected by the reflected echoes of road boundary in traffic scenes. Besides this, With the increase of the number of targets and the number of effective echoes, the number of interconnection matrices increases exponentially in joint probability data association, which will seriously affect the real-time and accuracy of high-speed scene algorithms.in the tracking system. So, A method of using millimeter wave radar to detect and fit the boundary guardrail of high-speed road is proposed, and the fitting results are applied to the vehicle detection and tracking system to improve the tracking accuracy.
Technical Paper

A Novelty Multitarget-Multisensor Tracking Algorithm with Out of Sequence Measurements for Automated Driving System on Highway Condition

2023-12-20
2023-01-7041
Automated driving system is a multi-source sensor data fusion system. However different type sensor has different operating frequencies, different field of view, different detection capabilities and different sensor data transition delay. Aiming at these problems, this paper introduces the processing mechanism of out of sequence measurement data into the multi-target detection and tracking system based on millimeter wave radar and camera. After the comparison of ablation experiments, the longitudinal and lateral tracking performance of the fusion system is improved in different distance ranges.
Technical Paper

A Novel LiDAR Anchor Constraint Method for Localization in Challenging Scenarios

2023-12-20
2023-01-7053
Positioning system is a key module of autonomous driving. As for LiDAR SLAM system, it faces great challenges in scenarios where there are repetitive and sparse features. Without loop closure or measurements from other sensors, odometry match errors or accumulated errors cannot be corrected. This paper proposes a construction method of LiDAR anchor constraints to improve the robustness of the SLAM system in the above challenging environment. We propose a robust anchor extraction method that adaptively extracts suitable cylindrical anchors in the environment, such as tree trunks, light poles, etc. Skewed tree trunks are detected by feature differences between laser lines. Boundary points on cylinders are removed to avoid misleading. After the appropriate anchors are detected, a factor graph-based anchor constraint construction method is designed. Where direct scans are made to anchor, direct constraints are constructed.
Technical Paper

Critical Scenarios Based on Graded Hazard Disposal Model of Human Drivers

2023-12-20
2023-01-7054
In order to improve the efficiency of safety performance test for intelligent vehicles and construct the test case set quickly, critical scenarios based on graded hazard disposal model of human drivers are proposed, which can be used for extraction of test cases for safety performance. Based on the natural driving data in China Field Operational Test (China-FOT), the four-stage collision avoidance process of human drivers is obtained, including steady driving stage, risk judgment stage, collision reaction stage and collision avoidance stage. And there are two human driver states: general state and alert state. Then the graded hazard disposal model of human drivers is constructed.
Technical Paper

Energy Transformation Propelled Evolution of Automotive Carbon Emissions

2023-10-30
2023-01-7006
The Chinese government and industries have proposed strategic plans and policies for automotive renewable-energy transformation in response to China’s commitments to peak the national carbon emissions before 2030 and to achieve carbon neutrality by 2060. We thus analyze the evolution of carbon emissions from the vehicle fleet in China with our data-driven models based on these plans. Our results indicate that the vehicle life-cycle carbon emissions are appreciable, accounting for 8.9% of the national total and 11.3% of energy combustion in 2020. Commercial vehicles are the primary source of automotive carbon emissions, accounting for about 60% of the vehicle energy cycle. Among these, heavy-duty trucks are the most important, producing 38.99% of the total carbon emissions in the vehicle operation stage in 2020 and 52.18% in 2035.
Technical Paper

Research on Low Illumination Image Enhancement Algorithm and Its Application in Driver Monitoring System

2023-04-11
2023-01-0836
The driver monitoring system (DMS) plays an essential role in reducing traffic accidents caused by human errors due to driver distraction and fatigue. The vision-based DMS has been the most widely used because of its advantages of non-contact and high recognition accuracy. However, the traditional RGB camera-based DMS has poor recognition accuracy under complex lighting conditions, while the IR-based DMS has a high cost. In order to improve the recognition accuracy of conventional RGB camera-based DMS under complicated illumination conditions, this paper proposes a lightweight low-illumination image enhancement network inspired by the Retinex theory. The lightweight aspect of the network structure is realized by introducing a pixel-wise adjustment function. In addition, the optimization bottleneck problem is solved by introducing the shortcut mechanism.
Technical Paper

MPC-Based Downhill Coasting-Speed Control Method for Motor-Driven Vehicles

2023-04-11
2023-01-0544
To improve the maneuverability and energy consumption of an electrical vehicle, a two-level speed control method based on model predictive control (MPC) is proposed for accurate control of the vehicle during downhill coasting. The targeted acceleration is planned using the anti-interference speed filter and MPC algorithm in the upper-level controller and executed using the integrated algorithm with the inverse vehicle dynamics and proportional-integral-derivative control model (PID) in the lower-level controller, improving the algorithm’s anti-interference performance and road adaptability. Simulations and vehicle road tests showed that the proposed method could realize accurate real-time speed control of the vehicle during downhill coasting. It can also achieve a smaller derivation between the actual and targeted speeds, as well as more stable speeds when the road resistance changes abruptly, compared with the conventional PID method.
Technical Paper

Motor Stator Modeling and Equivalent Material Parameters Identification for Electromagnetic Noise Calculation

2023-04-11
2023-01-0530
Aiming at the laborious process in motor structure modeling for acoustic noise calculation, an improved stator structure modeling scheme is proposed, which includes stator structure simplification and equivalent material parameters identification. The stator assembly is modeled as a homogeneous solid with the same size as the stator core, and the influence of model simplification is compensated by orthotropic equivalent material parameters. The equivalent material parameters are acquired through an optimization algorithm by minimizing the error between FEM calculated modal frequencies and the modal tested results. With the stator assembly model, the motor assembly model is built, and the constrained modal characteristics of the motor assembly are verified by comparing the modal frequencies to the resonance bands in the vibration acceleration spectrum. Finally, the motor structure model is used to calculate the electromagnetic noise of an induction motor.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

An Interactive Car-Following Model (ICFM) for the Harmony-With-Traffic Evaluation of Autonomous Vehicles

2023-04-11
2023-01-0822
Harmony-with-traffic refers to the ability of autonomous vehicles to maximize the driving benefits such as comfort, efficiency, and energy consumption of themselves and the surrounding traffic during interactive driving under traffic rules. In the test of harmony-with-traffic, one or more background vehicles that can respond to the driving behavior of the vehicle under test are required. For this purpose, the functional requirements of car-following model for harmony-with-traffic evaluation are analyzed from the dimensions of test conditions, constraints, steady state and dynamic response. Based on them, an interactive car-following model (ICFM) is developed. In this model, the concept of equivalent distance is proposed to transfer lateral influence to longitudinal. The calculation methods of expected speed are designed according to the different car-following modes divided by interaction object, reaction distance and equivalent distance.
X