Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Research on Fatigue Damage of Independent Suspension Support Structure for a Commercial Vehicle Based on Load Spectrum of Basic Vehicle

2023-04-11
2023-01-0807
In this paper, an equivalent conversion method is proposed to apply the six-dimensional force road spectrum of the four-axle vehicle on the same platform to the three-axle through the axle load comparison. Further, the feasibility of the devolved equivalent conversion method is verified, and the fatigue performance improvement of the wishbone support structure of a commercial vehicle is finally achieved. Specifically, firstly, the load spectrum at each attachment point of the suspension for the three-axle vehicle is obtained through the iteration of the multi-body dynamic model. Furthermore, the finite element model of the suspension for the three-axle vehicle is established; the analysis of fatigue life for the suspension structure is performed by extracting stress amplitude through the multi-axis cyclic counting method and calculating equivalent force amplitude through McDiarmid’s criterion, combined with the SN curve of the material.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

Fatigue Analysis on a Battery Support Plate for the Pure Electric Vehicle

2022-03-29
2022-01-0256
As the international community strengthens the control of carbon dioxide emissions, electric vehicles have gradually become a substitute for internal combustion engine vehicles. The battery pack is one of the most important components of electric vehicles. The strength and fatigue performance of the battery support plate not only affect the performance of the vehicle but also concern the safety of the driver. In the present study, the finite element model of a battery pack for fatigue analysis is completely established. The random vibration stress response analysis and acceleration power spectral density response analysis of the support plate for the battery pack are carried out, and the accuracy of the finite element model is verified by a random vibration test.
X