Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Lane Changing Comfort Trajectory Planning of Intelligent Vehicle Based on Particle Swarm Optimization Improved Bezier Curve

2023-12-31
2023-01-7103
This paper focuses on lane-changing trajectory planning and trajectory tracking control in autonomous vehicle technology. Aiming at the lane-changing behavior of autonomous vehicles, this paper proposes a new lane-changing trajectory planning method based on particle swarm optimization (PSO) improved third-order Bezier curve path planning and polynomial curve speed planning. The position of Bezier curve control points is optimized by the particle swarm optimization algorithm, and the lane-changing trajectory is optimized to improve the comfort of lane changing process. Under the constraints of no-collision and vehicle dynamics, the proposed method can ensure that the optimal lane-changing trajectory can be found in different lane-changing scenarios. To verify the feasibility of the above planning algorithm, this paper designs the lateral and longitudinal controllers for trajectory tracking control based on the vehicle dynamic tracking error model.
Technical Paper

Reward Function Design via Human Knowledge Graph and Inverse Reinforcement Learning for Intelligent Driving

2021-04-06
2021-01-0180
Motivated by applying artificial intelligence technology to the automobile industry, reinforcement learning is becoming more and more popular in the community of intelligent driving research. The reward function is one of the critical factors which affecting reinforcement learning. Its design principle is highly dependent on the features of the agent. The agent studied in this paper can do perception, decision-making, and motion-control, which aims to be the assistant or substitute for human driving in the latest future. Therefore, this paper analyzes the characteristics of excellent human driving behavior based on the six-layer model of driving scenarios and constructs it into a human knowledge graph. Furthermore, for highway pilot driving, the expert demo data is created, and the reward function is self-learned via inverse reinforcement learning. The reward function design method proposed in this paper has been verified in the Unity ML-Agent environment.
X