Refine Your Search

Topic

Search Results

Technical Paper

Transient Temperature Field Prediction of PMSM Based on Electromagnetic-Heat-Flow Multi-Physics Coupling and Data-Driven Fusion Modeling

2023-10-30
2023-01-7031
With the increase of motor speed and the deterioration of operating environment, it is more difficult to predict the transient temperature field (TTF). Meanwhile, it is difficult to obtain the temperature test dataset of key nodes under various complete road conditions, so the cost of bench test or real vehicle test is high. Therefore, it is of great significance to establish a high fidelity, lightweight temperature prediction model which can be applied to real vehicle thermal management for ensuring the safe and stable operation of motor. In this paper, a physical model simulating electromagnetic-heat-flow multi-physical coupling of permanent magnet synchronous motor (PMSM) in electric drive gearbox (EDG) is established, and the correctness of the model is verified by the actual EDG bench test.
Technical Paper

Low Friction Coating for High Temperature Bolted Joints in IC Engines

2023-04-11
2023-01-0733
The IC engine still plays an important role in global markets, although electrified vehicles are highly demanded in some markets. Emission requirements for stoichiometric operation are challenging. This requires the bolted joints for turbo, EGR (Exhaust Gas Recirculation) and exhaust manifold to work under much higher temperature than before. How to avoid fastener breakage due to bolt bending caused by cyclic changes of the thermal conditions in engines is a big challenge. The temperatures of the components in the exhaust, EGR (Exhaust Gas Recirculation) and turbo systems change from ambient temperature to about 800 ~ 1000 °C when engines run at peak power with wide-open throttle. The temperature change induces catastrophic cyclic bending and axial strain to the fasteners. This research describes a method to reduce the cyclic bending displacement in the fasteners using a low friction washer.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

Intersection Traffic Safety Evaluation Using Potential Energy Filed Method

2023-04-11
2023-01-0855
The intersection is recognized as the most dangerous area because of the restricted road structures and indeterminate traffic regulations. Therefore, according to the Vehicle-to-everything (V2X) communication, Intelligent Transportation Systems (ITS), and Digital Twin data, we present a potential energy field method to establish the general characteristics of intersection traffic safety, evaluate the safety situation of intersection and assist intersection traffic participants in passing through the intersection safer and more efficient. The resulting potential energy field method is established by the contour line of traffic participants' potential energy, which is constructed as a superposition of disparate energies, such as boundary potential energy, body potential energy, and velocity potential energy. The intersection traffic safety is evaluated by the potential energy field characteristic of simultaneous intersection traffic participants.
Technical Paper

Simulation Based Visual Study of Particulate Deposition Characteristics in Millimeter-Scale Channels of a Diesel Particulate Filter

2023-04-11
2023-01-0387
The diesel particulate filter (DPF) is an effective device for reducing particulate emissions from diesel engines, while its durability and reliability after long-term use are causes for concern. Usually, particulates are considered to be uniformly deposited in DPF channels to form a cake or end plug, however, recent studies have found that a “middle channel deposit” phenomenon of particulates can form a bridge near the middle of the DPF channel. This phenomenon has serious adverse effects on the durability and reliability of the DPF, including abnormally increased pressure drop and frequent regeneration. Since the width of the DPF channel is only about 1-2 millimeters, conventional methods cannot observe the particulate deposition process inside the DPF.
Technical Paper

Improved Energy Management with Vehicle Speed and Weight Recognition for Hybrid Commercial Vehicles

2022-10-28
2022-01-7052
The driving conditions of commercial logistics vehicles have the characteristics of combined urban and suburban roads with relatively fixed mileage and cargo load alteration, which affect the vehicular fuel economy. To this end, an adaptive equivalent consumption minimization strategy (A-ECMS) with vehicle speed and weight recognition is proposed to improve the fuel economy for a range-extender electric van for logistics in this work. The driving conditions are divided into nine representative groups with different vehicle speed and weight statuses, and the driving patterns are recognized with the use of the bagged trees algorithm through vehicle simulations. In order to generate the reference SOC near the optimal values, the optimal SOC trajectories under the typical driving cycles with different loads are solved by the shooting method and the optimal slopes for these nine patterns are obtained.
Technical Paper

Fatigue Endurance Limit of Fasteners in Automotive Application

2022-03-29
2022-01-0260
Fasteners, commonly used in automotive industry, play an important role in the safety and reliability of the vehicle structural system. In practical application, bolted joints would never undergo fully reversed loading; there always will be positive mean stress on bolt. The mean stress has little influence on the fatigue life if the maximum stress is lower than a threshold which is near the yield stress of the bolt. However, when the sum of the mean stress and the stress amplitude exceeds the threshold, the endurance limit stress amplitude decreases fast as the mean stress increases. The purpose of this paper is to research the fatigue endurance limit of a fastener and establish the threshold for safe design in automotive application. In order to obtain the fatigue endurance limit at different mean stress levels, various mechanical tests were performed on M12x1.75 and M16x1.5 Class 10.9 fasteners using MTS test systems.
Technical Paper

Lane Marking Detection for Highway Scenes based on Solid-state LiDARs

2021-12-15
2021-01-7008
Lane marking detection plays a crucial role in Autonomous Driving Systems or Advanced Driving Assistance System. Vision based lane marking detection technology has been well discussed and put into practical application. LiDAR is more stable for challenging environment compared to cameras, and with the development of LiDAR technology, price and lifetime are no longer an issue. We propose a lane marking detection algorithm based on solid-state LiDARs. First a series of data pre-processing operations were done for the solid-state LiDARs with small field of view, and the needed ground points are extracted by the RANSAC method. Then, based on the OTSU method, we propose an approach for extracting lane marking points using intensity information.
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

Multi-Objective Control of Dynamic Chassis Considering Road Roughness Class Recognition

2021-04-06
2021-01-0322
For the DCC (Dynamic Chassis Control) system, in addition to the requirement of ride and comfort, it is also necessary to consider the requirement of handling and stability, and these two requirements are often not met at the same time. This poses a great challenge to the design of the controller, especially in the face of complex working conditions. In order to solve this problem, this paper proposes a comprehensive DCC controller that considers road roughness class recognition. Firstly, a quarter vehicle model is established, the road surface roughness is calculated from the vertical acceleration of the wheels measured by the sensors. Then we calculate the autocorrelation function and the Fourier transform to estimate the PSD (Power Spectral Density) to get the road roughness class. Then control algorithms are designed for the vertical motion control, roll control and pitch control.
Technical Paper

Three Failure Models for CFRP Composites

2021-04-06
2021-01-0310
Several failure criteria and stiffness degradation laws for composite materials are summarized and compared in terms of precision and convenience of use. The 2D/3D Hashin failure criteria are coupled with the stiffness degradation rules provided by Tan, Tserpes and Zinoviev. Three new failure models including 2D Hashin-Tan, 3D Hashin-Tser and 3D Hashin-Zin are presented for CFRP materials. The above three models were coded and incorporated into the ABAQUS software by user subroutines, among which model 2D Hashin-Tan and model 3D Hashin-Tser were programmed using the implicit algorithm VUSDFLD while model 3D Hashin-Zin was coded using the explicit algorithm VUMAT. Experiments of uniaxial tension and three-point bending were performed. A single element subjected to uniaxial tension and three-bending were simulated to check the function and precision of the new models.
Technical Paper

Multi-physics Modeling of Electromagnetically Excited Acoustic Noise of Induction Motor

2021-04-06
2021-01-0772
For electric vehicles, electromagnetically excited noise from the traction motor is one of the main acoustic noise sources, especially for automobiles driven at low speed that mechanical noise and aerodynamic noise are minor. To analyze the characteristics of the electromagnetically excited noise and propose noise reduction suggestions, an accurate noise prediction model is essential. In this paper, a multi-physics model to predict the electromagnetic force excited acoustic noise of induction motor is presented. First, a Three-Dimensional (3D) transient electromagnetic model of the motor was established using the Finite Element Method (FEM). By inputting the current signal collected in the noise test as the current source in the FEM model, the uneven distributed time-varying magnetic forces, which included the influence of the current harmonics due to Pulse-Width Modulation (PWM), was calculated. Then, a structural model was built.
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Technical Paper

A Road Load Data Processing Method for Transmission Durability Optimization Development

2020-04-14
2020-01-1062
With increasing pressure from environment problem for reduction in CO2 emissions and stricter fuel targets from road vehicles, new transmission technologies are gaining more attention in different main market. To get suitable road load data for transmission durability development is becoming increasingly important and can shorten the development time of new transmission. This paper presents the procedure and methods of road load data development for durability design of transmission product and optimization based on the real road data measurement, statistical characteristics evaluation and fatigue damage equivalency. Apply this road load data method procedure on 3 type of vehicle which represent conventional vehicle, BEV and HEV.
Technical Paper

Improved Kmeans Algorithm for Detection in Traffic Scenarios

2019-06-17
2019-01-5067
In the Kmeans cluster segmentation used in traffic scenes, there are often zone optimization and over-segmentation problems caused by the algorithm randomly assigning the initial cluster center. In order to improve the target extraction effect in traffic road scenes, this article proposes an improved Kmeans (IM-Kmeans) method. Firstly, search for the histogram peaks of the whole pixels based on hue, saturation, value (HSV) image, and find the initial cluster centers’ positions and number. Secondly, the noise points which are far away from the center pixel are removed, and then the pixels are classified into the nearest cluster center according to its value. Finally, after the clustering model reaches convergence, the area-clustering method is used for another classification to solve the over-segmentation problem. The simulation and experimental comparisons show that the IM-Kmeans algorithm has higher clustering accuracy than the traditional Kmeans algorithm.
Technical Paper

A Steerable Curvature Approach for Efficient Executable Path Planning for on-Road Autonomous Vehicle

2019-04-02
2019-01-0675
A rapid path-planning algorithm that generates drivable paths for an autonomous vehicle operating in structural road is proposed in this paper. Cubic B-spline curve is adopted to generating smooth path for continuous curvature and, more, parametric basic points of the spline is adjusted to controlling the curvature extremum for kinematic constraints on vehicle. Other than previous approaches such as inverse kinematics, model-based prediction postprocess approach or closed-loop forward simulation, using the kinematics model in each iteration of path for smoothing and controlling curvature leading to time consumption increasing, our method characterized the vehicle curvature constraint by the minimum length of segment line, which synchronously realized constraint and smooth for generating path. And Differ from the path of robot escaping from a maze, the intelligent vehicle traveling on road in structured environments needs to meet the traffic rules.
Technical Paper

Robust Multi-Lane Detection and Tracking in Temporal-Spatial Based on Particle Filtering

2019-04-02
2019-01-0885
The camera-based advanced driver assistance systems (ADAS) like lane departure warning system (LDWS) and lane keeping assist (LKA) can make vehicles safer and driving easier. Lane detection is indispensable for these lane-based systems for achieving vehicle local localization and behavior prediction. Since the vision is vulnerable to the variable environment conditions such as bad weather, occlusions and illumination, the robustness is important. In this paper, a robust algorithm for detecting and tracking multiple lanes with arbitrary shape is proposed. We extend the previously lane detection and tracking process from the space domain to the temporal-spatial domain by using a more robust and general multi-lane model. First, new slice images containing temporal information are generated from image sequences. Instead of binarization process, we use a more general detector for extracting the lane marker candidates with prior knowledge to generate the binary slice image.
Technical Paper

Real Time 2D Pose Estimation for Pedestrian Path Estimation Using GPU Computing

2019-04-02
2019-01-0887
Future fully autonomous and partially autonomous cars equipped with Advanced Driver Assistant Systems (ADAS) should assure safety for the pedestrian. One of the critical tasks is to determine if the pedestrian is crossing the road in the path of the ego-vehicle, in order to issue the required alerts for the driver or even safety breaking action. In this paper, we investigate the use of 2D pose estimators to determine the direction and speed of the pedestrian crossing the road in front of a vehicle. Pose estimation of body parts, such as right eye, left knee, right foot, etc… is used for determining the pedestrian orientation while tracking these key points between frames is used to determine the pedestrian speed. The pedestrian orientation and speed are the two required elements for the basic path estimation.
Technical Paper

GPU Implementation for Automatic Lane Tracking in Self-Driving Cars

2019-04-02
2019-01-0680
The development of efficient algorithms has been the focus of automobile engineers since self-driving cars become popular. This is due to the potential benefits we can get from self-driving cars and how they can improve safety on our roads. Despite the good promises that come with self-driving cars development, it is way behind being a perfect system because of the complexity of our environment. A self-driving car must understand its environment before it makes decisions on how to navigate, and this might be difficult because the changes in our environment is non-deterministic. With the development of computer vision, some key problems in intelligent driving have been active research areas. The advances made in the field of artificial intelligence made it possible for researchers to try solving these problems with artificial intelligence. Lane detection and tracking is one of the critical problems that need to be effectively implemented.
Technical Paper

Effect of a Perforated Resonator on the Flow Performances of the Turbocharged Intake System for a Diesel Engine

2018-04-03
2018-01-0678
The flow issues of the turbocharged intake system for a diesel engine are mainly introduced in this work and the effects of a multi-chamber perforated resonator which can efficiently attenuate broadband noise and has compact structure on the flow performances of the intake system is analyzed by contrast. Based on the acoustic grid resulting from pre-processing of 3D models for finite element analysis, a computational fluid dynamics flow simulation comparative analysis between the intake systems with and without a resonator including pressure and velocity distribution is conducted with the software Star-CCM+. The simulation results indicate that the air pressure drop of the intake system with a resonator is slightly higher than that of the intake system without a resonator but it is still relatively low compared with that of the entire intake system.
X