Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Braking Judder Test and Simulation Analysis of Commercial Vehicle

2024-04-09
2024-01-2342
Brake judder affects vehicle safety and comfort, making it a key area of research in brake NVH. Transfer path analysis is effective for analyzing and reducing brake judder. However, current studies mainly focus on passenger cars, with limited investigation into commercial vehicles. The complex chassis structures of commercial vehicles involve multiple transfer paths, resulting in extensive data and testing challenges. This hinders the analysis and suppression of brake judder using transfer path analysis. In this study, we propose a simulation-based method to investigate brake judder transfer paths in commercial vehicles. Firstly, road tests were conducted to investigate the brake judder of commercial vehicles. Time-domain analysis, order characteristics analysis, and transfer function analysis between components were performed.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

Measurement and Modeling for Creep Groan of a Drum Brake in Trucks

2024-04-09
2024-01-2351
An experiment is carried out to measure creep groan of a drum brake located in a trailer axle of a truck. The noise nearby the drum brake and accelerations on brake shoes, axle and trailer frame are collected to analyze the occurring conditions and characteristics of the creep groan. A multi-body dynamics model with 1/4 trailer chassis structures is established for analyzing brake component vibrations that generates the creep groan. In the model, the contact force between brake cam and brake shoes, the contact friction characteristics between brake linings and inner circular surface of brake drum, and the properties of chassis structure are included. Dynamic responses of brake shoes, axle and trailer frame during the braking process are estimated using the established model and the responses are compared with the measured results, which validate the model.
Technical Paper

Study on the Influence of Air Suspension Levelling Valve Charging and Discharging Characteristics on Heavy Truck Roll Stability

2021-04-06
2021-01-0980
Roll stability is an important attribute which must be accounted for in heavy trucks. In order to analyze the anti-roll performance of the suspension in the early period of development, engineers will generally use Multi Body Dynamics (MBD) simulation software which can save time in the product development cycle. However, air suspension employs levelling valves to adjust the height by charging and discharging air springs. The air spring is typically modeled as a closed container in the simulation; the stiffness change of the air spring caused by the levelling valve is not considered. In this paper, an air suspension with levelling valves model integrated into the multi-body dynamic model of a 6�4 heavy truck is built with a co-simulation technique to investigate the influence of three types of levelling valves arrangement on the roll performance of the suspension under two typical conditions.
Technical Paper

Frequency Conversion Controlled Vapor Recovery System by Temperature and Flow Signals: Model Design and Parameters Optimization

2013-09-24
2013-01-2348
Current gasoline-gas vapor recovery system is incomplete, for it cannot adjust the vapor-liquid ratio automatically due to the change of working temperature. To solve this problem, this paper intends to design a new system and optimize its parameters. In this research, variables control method is used for tests while linear regression is used for data processing. This new system moves proportion valve away and adds a DSP control module, a frequency conversion device, and a temperature sensor. With this research, it is clearly reviewed that the vapor-liquid ratio should remains 1.0 from 0 °C to 20 °C as its working temperature, be changed into 1.1 from 20 °C to 25 °C, be changed into 1.2 from 25 °C to 30 °C, and be changed into 1.3 when the working temperature is above 30 °C.
X